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The twelfth problem of Hilbert reminds us, although the reminder should be unnecessary, of the blood
relationship of three subjects which have since undergone often separate developments. The first of these, the
theory of class fields or of abelian extensions of number fields, attained what was pretty much its final form early
in this century. The second, the algebraic theory of elliptic curves and, more generally, of abelian varieties, has
been for fifty years a topic of research whose vigor and quality shows as yet no sign of abatement. The third, the
theory of automorphic functions, has been slower to mature and is still inextricably entangled with the study of
abelian varieties, especially of their moduli.

Of course at the time of Hilbert these subjects had only begun to set themselves off from the general
mathematical landscape as separate theories and at the time of Kronecker existed only as part of the theories
of elliptic modular functions and of cyclotomic fields. It is in a letter from Kronecker to Dedekind of 1880,1

in which he explains his work on the relation between abelian extensions of imaginary quadratic fields and
elliptic curves with complex multiplication, that the word Jugendtraum appears. Because these subjects were
so interwoven it seems to have been impossible to disintangle the different kinds of mathematics which were
involved in the Jugendtraum, especially to separate the algebraic aspects from the analytic or number theoretic.
Hilbert in particular may have been led to mistake an accident, or perhaps necessity, of historical development for
an “innigste gegenseitige Berührung.” We may be able to judge this better if we attempt to view the mathematical
content of the Jugendtraum with the eyes of a sophisticated contemporary mathematician.

An elliptic curve over a field k is a curve A in some projective space Pn defined, say, by equations

gi(x0, . . . , xn) = 0

together with a rational map
zj = fj(x0, . . . , xn; y0, . . . , yn)

from A×A to A which turns the set of points on A into a group. Roughly speaking — the adverb is to be taken
seriously — an elliptic curve over an arbitrary commutative ring R, which we always take to be noetherian, is
defined in the same way except that the coefficients of fj and gi are to lie inR. If one has an elliptic curve overB1

and a homomorphismϕ : B1 → B2 then replacing the coefficients of fj and gi by their images underϕwe obtain
an elliptic curve over B2. In this way the sets A(B) of isomorphism classes of elliptic curves over a commutative
noetherian ring B become a covariant functor on the category of such rings.

In the theory of complex multiplication one introduces a subfunctor. Take E to be an imaginary quadratic
field and letO be the ring of integers inE. We are now interested only in ringsB together with a homomorphism
ψ : O → B and maps B1 → B2 for which

O
ψ1 ↙ ↘ ψ2

B1 −→ B2

is commutative. The tangent space T (A) to an elliptic curve over B at the zero is a B-module. We are interested
in abelian varieties A over B together with an action of the elements of O as endomorphisms of A such that the
associated action of x ∈ O on T (A) is just multiplication by ψ(x) ∈ B. This gives us a new functor B → AO(B).
If n is a positive integer and if we consider only rings B in which n is invertible, we can introduce a refinement.
We can let An(B) be the points of A with coefficients from B whose order divides n and introduce as additional
datum an isomorphism of O-modules

λ : O/nO → An(B).

This defines a new function B → A0
n(B).

1 Gesammelte Werke, Bd V.
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The methods of contemporary algebraic geometry, with which the present author is as yet only superfi-
cially acquainted, allow one to prove the existence of a universal object for this functor. This is a ring Bn, a
homomorphism O → Bn, an abelian variety A′ over Bn, an action of O on A′, and an isomorphism

λ′ : O/nO → A′
n(Bn)

such that the conditions imposed above are satisfied and such that for any B any element of AO
n (B) is obtained

by functoriality from A′, λ′ and a uniquely determined homomorphism Bn → B. This is not quite true for small
n but the difficulty can be obviated by some technical considerations and is not worth stressing here.

The methods not only establish the existence but also allow one to read off properties of the ring Bn from
properties of the functor AO

n , that is, of elliptic curves over rings. For example, the notion of smoothness or,
in the language of algebraic number theory, lack of ramification, is translated into a notion of deformability.
The deformation theory of elliptic curves, and of abelian varieties, is well understood, and one can show that
Fn = Bn ⊗O E is a finite direct sum ⊕Ei of finite algebraic extensions of E unramified away from the primes
dividing n and that if Oi is the ring of integers in Ei then Bn, a subring of Fn, is equal to

⊕Oi[
1
n
].

Here Oi
1
n ] is the subring of E generated by Oi and 1

n .
If we imbed E into Q̄ ⊆ C then the algebra Fn is determined by the action of G(Q̄/E) on the set of its

E-homomorphisms into C, which is also AO
n (Q̄) = AO

n (C). If the action is transitive the algebra is a field. Before
investigating it we introduce some automorphisms of Fn. These are defined by automorphisms of the functor
restricted for the moment to rings in which every positive integer is invertible. This means that Bn is to be
replaced by Fn.

Let If be those ideles of E whose component at infinity is 1. We may imbed E× in If . We are going to
define an action of If on the functor AO

n . Let Of be the ring of adeles which are integral everywhere and have
component 1 at infinity. Suppose first that g ∈ If ∩ Of . There is a positive integer m and an h ∈ If ∩ Of such
that gh = m. Suppose {A, λ} in AO

n (B) is given. There is an extensionB′ ofB and an isomorphism (of sheaves!)

λ′ : O/n′O −→ An′(B′)

such that
mλ′(x) = λ(x).

g acts on O/n′O and we define a new elliptic curve A1 by dividing by

{λ′(gx) | x ∈ nO}.

There is then an isogeny ψ : A → A1 with this kernel and we define λ1 by

λ1(x) = ψ(λ′(gx)).

The pair {A1, λ1} actually defines an element of AO
n (B). The action of g takes A, λ to A1, λ1. Since elements of

O are easily seen to act trivially we can extend the action to all of If by letting that of �g, with � a positive integer,
be the same as that of g.

The action on AO
n (C) can easily be made explicit. If g ∈ If let gO be the ideal gOf ∩E. We have imbedded

E in C, and the quotient of C by the lattice gO is an elliptic curve Ag on which O acts. Moreover

Ag
n(C) =

gO

n

/
gO.

If we regard O/nO as Of/nOf we may define λg as

x → gx

n
.
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If
Kn = {k ∈ If | k ≡ k−1 ≡ 1(mod n)}

then Ag, λg and Ah, λh are isomorphic if and only if

h ∈ E×gkn

so that as a set AO
n (C) is just the quotient space E×\If/Kn. The action of If is the obvious action on the quotient

space.
By functoriality the action of G(Q̄/E) on AO

n (Q̄) = AO
n (C) commutes with that of If . Therefore there is

a unique homomorphism σ → ϕ(σ) of G(Q̄/E) into E×\If/Kn such that the actions of σ and ϕ(σ) are the
same. It follows in particular that G(Q̄/E) acts through an abelian quotient. To understand the homomorphism
σ → ϕ(σ) we have only to identify ϕ(σ) when σ is the Frobenius at a prime p of E which does not divide n.

Let Ep be the completion of E at p, Ēp an algebraic closure of Ep, and Ōp the ring of integers in Ēp. Fix an
imbedding Q̄ ↪→ Ēp.

AO
n (Q̄) ∼−→AO

n (Ēp) = HomO(Bn, Ēp) = HomO(Bn, Ōp).

Since Bn is unramified at p, we may use the map Ōp → κ̄p, the algebraic closure of the residue field κp of O at p,
to obtain

HomO(Bn, Ōp) � HomO(Bn, κ̄p) = AO
n (κ̄p).

All these isomorphisms do not affect the action of the Frobenius. Because p is not invertible in κ̄p, the
group If no longer operates, at least not quite as before. However Ip

f , consisting of those ideles which are 1 at
infinity and at p, continues to operate, because for these ideles we can take the auxiliary integer m prime to p,
and the difficulties attendant upon the anomalous behavior of p-division points in characteristic p do not appear.
Actually because of the simplicity of the present situation, it is rather easy to define an action of the missing part
of If , namely Ip, the multiplicative group of O ⊗ Qp. However, we want to avoid all ad hoc techniques. What is
needed is an understanding of the finite subgroups, in the scheme-theoretic sense, of an elliptic curve over a field
of characteristic p with order a power of p. The general method is the theory of the Dieudonné module. I do not
want to give its definition here. It is a module D(A) functorially associated to A. The action of Ip is replaced by
the action of the O-automorphisms of D(A)⊗ Q. This group turns out however, because of the special situation
with which we are dealing, to be Ip so that If does operate once again. Moreover E× and Kn still act trivially.
Since If is generated byE×, Ip

f , and Kn its action is compatible with the isomorphisms of sets introduced above.
If � is a generator of the maximal ideal of Op then � ∈ E×

p ⊆ Ip. The theory of Dieudonné modules
acquired, it is immediate that the action of � on AO

n (κ̄p) is the same as that of the Frobenius. It follows that
Fn is a field and is the abelian extension of E associated to E×I∞Kn ⊆ I by class field theory. Moreover the
homomorphism

G(Q̄/E) −→ G(Fn/E) � I/E×I∞Kn � If/E
×Kn

given by class-field theory is just σ → ϕ(σ). So far we have gotten by without any real arithmetic; only the
arithmetic of finite fields has played a role. However, it is an essential part of the Jugendtraum that every abelian
extension of E is contained in some Fn. For this we appeal to class-field theory.

But no elliptic modular functions have yet appeared. Let V (Z) be the module of column vectors of length
two over Z. We can consider the functor which associates to B the isomorphism

λ : V (Z/nZ) −→ An(B).

This functor is also represented by a universal object over a ring Jn. The morphism AO
n → An obtained by fixing

an isomorphism
O � V (Z)

and then forgetting the action of O yields a homomorphism η : Jn −→ Bn. If we imbed Bn −→ C over E
then of course the image generates a class-field, as described above. Composing the imbedding with η yields a
homomorphism of Jn or of Jn ⊗ C into C.
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Jn ⊗ C is the ring of rational functions on an algebraic variety Sn over C whose points give the homomor-
phisms of Jn into C, that is, the elements of An(C). In particular, to obtain ψ we have to evaluate the elements of
Jn at some point of Sn(C). There is, at least from the analytic standpoint, a more concrete way of viewing Sn(C)
and hence Jn ⊗ C. Let G be the group GL(2). Let J0 be the matrix(

0 −1
1 0

)
.

If g = (g∞, gf ) belongs to G(A) with g∞ ∈ G(R), gf ∈ G(Af ) we set

gfV (Z) = gfV (Zf ) ∩ V (Q).

Here Zf is the closure of Z in Af and V (Zf ) = V (Z)⊗ Zf . Then gfV (Z) is a lattice in V (R). Let J = g∞J0g
−1
∞ .

We turn V (R) into a one-dimensional space over C by defining multiplication by
√−1 to be J . Then

V (R)/gfV (Z)

is an elliptic curve Ag over C. Also

Ag
n(C) =

gfV (Z)
n

/
gfV (Z)

so we may take λg to be

x → gfx

n
.

The isomorphism class of {Ag, λg} is determined solely by the image of g in the double coset space

G(Q)\G(A)/K∞Kn

if K∞ is the centralizer of J0 in G(R) and Kn is

{k ∈ G(Zf ) | k ≡ 1(mod n)}.

This double coset space has a natural complex structure and may now be identified with Sn(C) = An(C).
Analyzing the double cosets more carefully one sees that Sn(C) consists of finitely many connected pieces

each of which is the quotient of the Poincaré half-plane by a congruence subgroup. The elements of Jn ⊗ C, in
particular the elements of Jn, are functions on these pieces and are in fact just the elliptic modular functions of
level n. The points of Sn(C) corresponding to the homomorphismψ introduced above are easily found explicitly.
Summing up, we conclude that the class field Fn is generated by the values of the elliptic modular functions in
Jn at a certain easily found point of

G(Q)\G(A)/K∞Kn.

As we said, any connected piece of this space is a quotient of the Poincaré half-plane by a discrete group. If we
lift the functions in Jn to the half-plane they become transcendental.

This aspect, the generation of class fields by the values of transcendental functions, has been emphasized
by Hilbert who suggests, in the twelfth problem, that it may be possible to find for an arbitrary number field
transcendental functions with a similar property. Whether justly or not, the twelfth problem has received very
little attention. Any progress made on it has been an incidental result of research with quite different ends,
although it too has its origins in the Jugendtraum. The bulk of this research is due to Shimura.

A characteristic of the number theory of the twentieth century has been the dominant role played by zeta-
functions and L-functions, especially at a conjectural level. The analytic properties of the L-functions associated
to an algebraic variety over a number field have been particularly difficult, usually impossible, to determine. But
Shimura has studied very deeply certain varieties, which, like the varieties defined by elliptic modular functions,
are closely related to algebraic groups. For various reasons it is to be expected that the L-functions associated to
these Shimura varieties can be expressed in terms of theL-functions associated to automorphic forms on the group
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defining the variety and on certain related groups. This in itself is not enough to establish the analytic properties
but it is a first step. Shimura, inspired by earlier work of Eichler, has been able to confirm the expectation for
some of his varieties, basically those which are curves.

But many problems remain. I want to discuss one of them, rather casually, in the remainder of the lecture.
There are various notions of a reciprocity law, all of them implicit in the laws of class-field theory. For example,
one can view a theorem asserting that an L-function defined by diophantine data, that is, by an algebraic variety
over a number field, is equal to an L-function defined by analytic data, that is, by an automorphic form, as a
reciprocity law. There is good reason for this, for the Artin reciprocity law is such an assertion. The results of
Eichler and Shimura are also of this form. There is nonetheless a more concrete notion available.

Suppose one has an algebraic variety S defined over a number field E. Suppose in fact that equations
defining S have been chosen whose coefficients are integral outside of some finite set of primes Q. If p /∈ Q and
κp is the residue field of E at p we can reduce the equations modulo p and then speak of the set S(κ̄p) of points
of S with coefficients in κ̄p. S(κ̄p) is given together with an action on it, that of the Frobenius Φp. An explicit
description of the sets S(κ̄p) and of the actions of Φp for all p /∈ Q could also be viewed as a reciprocity law. For
example, if E = Q and S is defined by the equation

x2 + 1 = 0

then S(κ̄p) for p �= 2 is a set with two elements and Φp acts trivially or not according as p ≡ 1 or p ≡ 3 modulo
4. This is the first supplement to the law of quadratic reciprocity.

It is very likely that Shimura varieties admit a reciprocity law in this sense. I want to describe explicitly the
form the law will most probably take. The description is speculative, but I have verified its correctness, in so far
as my limited command of the necessary techniques allows, for those varieties which arise as solutions of moduli
problems for abelian varieties.

To know the zeta-function of a variety, at least in the sense of knowing the factors of its Euler product
expansion for almost all p, one just has to know the number of points in S(κn

p ) for all positive n, if κp is the
extension of κp of degree n. This is just the number of fixed points of Φn

p in S(κ̄p). One might expect that this
could be determined from the explicit description of S(κ̄p) and of the action of Φp; so that from a reciprocity law
in the second sense for the Shimura variety S one could obtain one in the first sense, at least for its zeta-function.
However, difficult combinatorial problems arise which have not yet been seriously broached. But I have been
able to make the transition in a limited number of cases, among which are included varieties of arbitrary large
dimension.

The work of Shimura has been expounded in a remarkably clear fashion by Deligne,2 who also added
improvements of his own. One begins with a reductive algebraic group G over Q and a homomorphism
H0 : GL(1) → G defined over C. The pair (G, h0) is subject to some simple formal conditions. If R is the torus
over R obtained from GL(1) over C by restriction of scalars so that over C

R � GL(1)×GL(1)

then the composition
h : R ∼−→ GL(1)×GL(1) → G,

where the second map is (x, y) → h0(x)ρh0(y)with ρ the complex conjugation, is to be a homomorphism defined
over R. The centralizer of h(R) in Gder(R) is to be maximal compact subgroup of Gder(R) and if K∞ is the
centralizer of h(R) in Gder(R) then the quotient G(R)/K∞ is to carry an invariant complex structure, specified
by h0.

It is in fact not h0 which is significant but the collection of ad g ◦ h0, g ∈ G(R). If T is a Cartan subgroup
of G defined over Q with T (R) ∩ Gder(R) compact we may choose h′0 = adg ◦ h0 so that it factors through T .
We then denote h′

0 : GL(1) → T by µ̂; it is a coweight of T . If E is defined to be the fixed field of the set of all
σ ∈ G(Q̄/Q) for which σµ̂ = ωµ̂ with ω in the Weyl group of T then E, which is a finite extension of Q in C,
plays an important role in the study of Shimura varieties.

2 Séminaire Bourbaki, 1970/71.
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If K is an open compact subgroup of G(Af ) then the complex manifold

SK(C) = G(Q)\G(A)/K∞K

is the set of complex points of an algebraic variety of C. It has been conjectured, hesitantly by Shimura, openly
by Deligne, that this family of algebraic varieties should have models SK over E. The precise conjecture actually
demands certain further properties of the SK , which serve to characterize them uniquely. These properties are
patterned on the Jugendtraum; so that implicit in any proof of the existence of these canonical models SK is a
partial solution to the twelfth problem. The conjecture, colloquially referred to as the Shimura conjecture, has
been solved for many groups but by no means all. My suggestions will only make sense for those groups for
which the Shimura conjecture is acquired.

The group G(Af ) operates on
lim←

K

SK(C).

It is demanded that this be reflected in an action of G(Af ) on

lim←
K

SK

defined over E.
Fix a prime p of E and let p be the prime of Q it divides. I shall suppose that the group G is quasi-split

over Qp and split over an unramified extension. Recall that if Gsc is the simply-connected form of the derived
group Gder then Bruhat and Tits have associated a building to Gsc(Qp) on which G(Qp) acts. A special maximal
compact subgroup of G(Qp) is the intersection of the stabilizer in G(Qp) of a special vertex of the Bruhat-Tits
building with

{g ∈ G(Qp)
 |χ(g)| = 1 for all rational characters of G defined over Qp}.

We shall only be interested in K of the form
K = KpKp

where Kp ⊂ G(Ap
f ) and Kp is a special maximal compact of G(Qp).

The varieties SK are defined overE and hence overEp. SupposeOp is the ring of integers ofEp. To speak of
SK(κ̄p) we need models over Op. At the moment I do not know how they should be characterized. Presumably
if SK/E is proper and smooth then SK/Op should also be proper and smooth. But if SK/E is not proper, some
attention will have to be paid to the behavior at infinity. I simply ignore the difficulty for now and go on to
describe the expected structure of SK(κ̄p). It is enough to consider that of

lim←
Kp

SK(κ̄p) = SKp(κ̄p)

provided that we know how G(Ap
f ) acts on the right-hand side, for

SK(κ̄p) = SKp(κ̄p)/Kp.

The set SKp(κ̄p) should be the union of certain subsets invariant under G(Ap
f ) and Φ = Φp. Each of them is

constructed from the following data:
(i) a group H over Q and an imbedding H(Ap

f ) ↪→ G(Ap
f );

(ii) a group Ḡ over Qp and an imbedding H(Qp) ↪→ Ḡ(Qp);
(iii) a space X on which Ḡ(Qp) and Φ act, the two actions commuting with each other.
The imbeddings H(Ap

f ) ↪→ G(Ap
f ), H(Qp) ↪→ Ḡ(Qp) when combined with the diagonal imbedding

H(Q) ↪→ H(Af ) yield an action of H(Q) on G(Ap
f )×X . The subsets to which I referred have the form

Y = H(Q)\G(Ap
f )×X.
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G(Ap
f ) acts in the obvious way to the right and Φ acts through its action on X .
Before venturing a general prescription for H,G, and X we should orient ourselves with a brief glance at

G = GL(2) with h given by

(a+ ib, a− ib) −→
(
a −b
b a

)
, a, b ∈ C, a2 + b2 �= 0.

For mnemonic reasons, I adhere to a slightly different convention than Deligne, so that my h is the inverse
of his. For this pair G, h there is one subset for each imaginary quadratic extension F of Q. H is the group
F ∗ over Q associated in the usual way to F so that H(Q) = F×, Ḡ is also H , and X is the quotient of
H(Qp) = (E ⊗ Qp)× � Q×

p × Q×
p by H(Zp), the group of units, Z×

p × Z×
p . If g is one of the prime divisors of

p in E and � the corresponding uniformizing parameter then Φ is multiplication by � ∈ (E ⊗ Qp)
×. There is

one additional subset. For it, H is the multiplicative group of the quaternion algebra over Q split everywhere
except at infinity and p and Ḡ is H . X is the quotient Ḡ(Qp)/Ḡ(Zp), if Ḡ(Zp) is the multiplicative group of the
maximal order in the completion of the algebra at p. Φ is multiplication by any � in this order which generates
the maximal ideal.

There is an alternative description of the X for the final subset which yields more insight into the general
situation. Let k be the completion of the maximal unramified extension of Qp and o its ring of integers. Denote
by a → σa the action of the Frobenius. Let H be the set of o-lattices in the space of column vectors of length 2
over k. H is the set of vertices in the Bruhat-Tits building of G(k). Set

b =

(
0 1
p 0

)
.

Define an action of Φ on H by
Φk = bσk.

Then
Ḡ(Qp) = {g ∈ G(k) | bσgb−1 = g}

and X is the set of all x in H for which
px⊂

�=
Φx⊂

�=
x.

Geometrically this means that the images of x and Φx in the Bruhat-Tits building of Gsc(k) = SL(2, k) are joined
by an edge. To verify that the two descriptions of X are not essentially different, one uses the fact that the
Bruhat-Tits building is a tree. It is an amusing exercise.

To define H, Ḡ, and X in general we fix Q̄ ↪→ C and then choose, once and for all, an imbedding Q̄ ↪→ Q̄p

so that the prime of E it defines is p. Suppose γ belongs to G(Q) and is semi-simple. Suppose moreover that all
the eigenvalues of γ have absolute value 1 away from infinity and p. Let

Ho = {g ∈ G | gγm = γmg for some m �= 0 in Z}.

Ho is connected and of course defined over Q. Suppose ho : R → Ho and the composition

R
ho−→HO ↪→ G

is conjugate under G(R) to h. If T is a Cartan subgroup of Ho defined over Q with T (R) ∩ Gder(R) compact,
then, as before, replacing ho by ad g ◦ ho, g ∈ Ho(R) if necessary, we may suppose ho factors through T . The
associated

ho
0 : GL(1) → T

is a coweight µ̂ of T . µ̂ is not uniquely determined by ho, but its orbit under the Weyl group of T in H o is; and
that suffices for the following.
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If L(T ) is the Z-module
Hom(T,GL(1))

and
L̂(T ) = Hom(GL(1), T )

then L̂(T ) is also
Hom(L(T ),Z).

Define λ̂(γ) ∈ L̂(R) by

|λ(γ)|p = p−〈λ,λ̂(γ)〉, λ ∈ L(T ).

Let M be the lattice of rational characters of Ho defined over Qp. We say that the pair (γ, ho) is of Frobenius type

if there is an r > 0 in Q such that λ̂(γ)− rµ̂ is orthogonal to M .
Later an equivalence relation will be introduced on pairs of Frobenius type. To each equivalence class will

be associated H, Ḡ, and X , as well as
Y = H(Q)\G(Ap

f )×X.

For each equivalence class we will also define a multiplicity d. If dY is the disjoint union of d copies of Y then,
as a set on which Φ and G(Ap

f ) act, SKp(κ̄p) should be isomorphic to the disjoint union over equivalence classes
of pairs of Frobenius type of the sets dY .

For the moment fix γ and ho. H will be obtained from Ho by an inner twisting. Since the Hasse principle
is valid for the adjoint group Ho

ad, it is enough to specify the twisting locally! Of course it has also to be verified
that there is a global twisting with the specified local behavior; but this turns out to be a matter of standard
techniques. The twisting is trivial except at infinity and p. At infinity it is so arranged that Hder(R) is compact.
Before describing the twisting at p, we introduce a subgroup Ḡo of G defined over Qp. It is the connected
subgroup whose Lie algebra is spanned by those elements V in the Lie algebra of G satisfying

Adγ(V ) = εV

with ε ∈ Q̄p and |ε|p = 1. Ḡ will be a twisted form of Ḡo.
We shall in fact twist Ḡo and Ho simultaneously. If T is as above, let Tad be its image in Ho

ad and T̄ad its
image in Ḡo

ad. We choose T so that Tad is anisotropic over Qp. Choose a finite Galois extension k of Q in Q̄ over
which T splits. Suppose aσ,τ is a fundamental 2-cocycle for kp/Qp. Since

T (kp) = L̂(T )⊗ k×p

we may introduce the 1-cochain
σ → aσ =

∑
τ∈G(kp/Qp)

στµ̂⊗ aσ,τ .

It takes values in T (kp) but is not a 1-cocycle. However its image in Tad(kp) or T̄ad(kp) is. Composing with the
maps

H1(G(kp/Qp), Tad(kp)) → H1(Q̄p, H
o)

H1(G(kp/Qp), T̄ad(kp)) → H1(Q̄p, Ḡ
o)

we obtain the twisting cocycles for Ho and Ḡo at p. One must of course verify that the twistings are independent
of all auxiliary data.

The homomorphism Ho → Gder\G yields H → Gder\G. The multiplicity d is the number of elements in
H1(Q̄, H) which are trivial at every place except p, including infinity, and which lie in the kernel of

H1(Q̄, H) → H1(Q̄, Gder\G).

It may be, however, a little rash to predict d on the basis of the examples studied, for the groups involved have
special cohomological properties.
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The set X is the object must complicated to define. Set

ν̂ =
∑

τ∈G(kp/Qp)

τµ̂

and denote
ν̂ ⊗ x ∈ L̂(T )⊗ k×p = T (kp)

by xν̂ . We define the Weil group, Wkp/Qp
, by means of the cocycle aσ,τ . If w = (x, σ) ∈ Wkp/Qp

, with
x ∈ k×p , σ ∈ G(kp/Qp), set

bw = xν̂aσ.

Then w → bw is a 1-cocycle. Let D be the maximal torus in the centre of Ho split over Qp. Let k be the maximal
unramified extension of Qp. It turns out that if we enlarge kp to some k′p and inflate bw to Wk′p/Q

p
then we may

represent its class by a cocycle {b̄w} such that
b̄w = b̄′wb̄

′′
w

where b̄′w ∈ T (k), b̄′′w ∈ D(Q̄p) and
|λ(b̄′′w)|p = 1

for all rational characters of D. Moreover if Wo is the kernel of Wkp/Qp → G(F̄p/Fp) then we may take b̄′w = 1
for w ∈ W o. If w is any element of Wk′p/Qp which maps to the Frobenius in G(κ̄p/κp) set

b = b̄′w.

We regard b as an element ofG(k). Any other choice of the auxiliary data replaces b by cbσc−1 if σ is the Frobenius
on k. Such a change is irrelevant for our purposes. Observe that we may realize Ḡ(Qp) as

{g ∈ G(k) | bσgb−1 = g}.

The group Kp determines a special vertex in the Bruhat-Tits building of Gsc(Qp) and hence of Gsc(k) which
in turn determines a parahoric subgroup of Kp(k) of G(k). Set

H = G(k)/Kp(k).

Let F be the map H → H which takes the point represented by g to the point represented by bσg.
There is a bijection between conjugacy classes of parabolic subgroups ofG and conjugacy classes of parahoric

subgroups with a representative in Kp(k). Let I be the class determined by the parabolic subgroup generated
by T and the family of one-parameter subgroups corresponding to roots α with 〈α, µ̂〉 ≤ 0. Any point x of H
determines a special spoint xi in the Bruhat-Tits building of each simple factor Gi(k) of Gsc(k). We consider only
those x such that if y = F x then, for each i, xi and yi are either the same or are joined by an edge. Then xi and yi

determine a parahoric subgroup of Gi(k) and, as a consequence, x and y determine a parahoric subgroup of G(k).
X consists of those x for which this parahoric subgroup lies in the class I. G(Qp) acts on X . If r = [Ek : Qp] we
define the action of Φk to be F r .

The correct conditions defining the equivalence of two pairs (γ1, h
o
1), (γ2, h

o
2) seem to be local, one condition

at each finite place, but none at the infinite place. There should be positive integers m and n and a δ in the centre
of G(Q) with every eigenvalue a unit such that, first of all, γm

1 and δγn
2 are conjugate in G(Q�) for each � �= p.

They should also be conjugate in G(k). Let

δγn
2 = gγm

1 g−1, g ∈ G(k).

Suppose b1 and b2 in Ho
1 (R) and Ho

2 (R) are associated to (γ1, h
o
1) and (γ2, h

o
2) as above. Then gbσ1g

−1 ∈ Ho
2 (k).

The final condition for equivalence is that there be a c in Ho
2 (k) such that

cgb1
σg−1 σc−1 = b2.



Some contemporary problems 10

In order to define theΓ-factors that should appear in the functional equation of the zeta-function of a Shimura
variety one must also know something about their behavior at the infinite places of E. Two problems arise. If τ
is an automorphism of Q̄ over Q we may apply τ to the family SK over E to obtain a family of varieties τSK over
τE. This new family should be again just the canonical models for the Shimura varieties defined by some new
pair (τG, τh0). There is an obvious guess. τG should be obtained from G by an inner twisting which is trivial at
every finite place. If ρ is the complex conjugation and T is chosen as above then the twisting cocycle at infinity
should be ρ → tρ with

λ(tρ) = (−1)〈λ,τµ̂−µ̂〉, λ ∈ L(T ).

Then T may also be regarded as a Cartan subgroup of τG over R. The homomorphism τh0 should just be the
composition

GL(1)
τµ̂−−−→ T⊂−−−→IτG.

If the field E is real then the complex involution acts on SK(C) which as a complex manifold is isomorphic
to

G(Q)\G(A)/K∞K.

It should be possible to define the resulting involution on the double coset space explicitly. E can be real only if
ρµ̂ = ωµ̂with ω in the Weyl group of T inG. If this is so then ω can be realized by an elementw in the normalizer
of T in G(R). The element w will normalize K∞ so that the map g → gw may be transferred to the quotient.
This should give the involution.

Shimura and Shih are working on these two problems, which are deeper than they appear at first glance.


