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Ein Märchen*

R.P. Langlands

1. Introduction. It had been my intention to survey the problems posed by the study of zeta-

functions of Shimura varieties. But I was too sanguine. This would be a mammoth task, and limitations

of time and energy have considerably reduced the compass of this report. I consider only two problems,

one on the conjugation of Shimura varieties, and one in the domain of continuous cohomology. At

first glance, it appears incongruous to couple them, for one is arithmetic, and the other representation-

theoretic, but they both arise in the study of the zeta-function at the infinite places.

The problem of conjugation is formulated in the sixth section as a conjecture, which was arrived

at only after a long sequence of revisions. My earlier attempts were all submitted to Rapoport for

approval, and found lacking. They were too imprecise, and were not even in principle amenable

to proof by Shimura’s methods of descent. The conjecture as it stands is the only statement I could

discover that meets his criticism and is compatible with Shimura’s conjecture.

The statement of the conjecture must be preceded by some constructions, which have implications

that had escaped me. When combined with Deligne’s conception of Shimura varieties as parameter

varieties for families of motives they suggest the introduction of a group, here called the Taniyama

group, which may be of importance for the study of motives of CM-type. It is defined in the fifth

section, where its hypothetical properties are rehearsed.

With the introduction of motives and the Taniyama group, the report takes on a tone it was

not originally intended to have. No longer is it simply a matter of formulating one or two specific

conjectures, but we begin to weave a tissue of surmise and hypothesis, and curiosity drives us on.

Deligne’s ideas are reviewed in the fourth section, but to understand them one must be familiar at

least with the elements of the formalism of tannakian categories underlying the conjectural theory of

motives, say, with the main results of Chapter II of [40].

The present Summer Institute is predicated on the belief that there is a close relation between

automorphic representations and motives. The relation is usually couched in terms of L-functions,

* First appeared in Automorphic forms, representations, and L-functions, Proc. of Symp. in Pure
Math. XXXIII (1977)
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and no one has suggested a direct connection. It may be provided by the principle of functoriality and

the formalism of tannakian categories. This possibility is discussed in the highly speculative second

section.

However there is a small class of automorphic representations which are certainly not amenable

to this formalism. I have called them anomalous, and in order to make their significance clearer I

have discussed an example of Kurokawa at length in the third section. Although the anomalous

representations form only a small part of the collection of automorphic representations, they are

frequently encountered, especially in the study of continuous cohomology, and so we have come full

circle. Our long divagation has not been in vain, for we have acquired concepts that enable us to

appreciate the global significance of the local examples described in the seventh section, which deals

with the second of our original two problems.

At all events, I have exceeded my commission and been seduced into describing things as they

may be and, as seems to me at present, are likely to be. They could be otherwise. Nonetheless it is useful

to have a conception of the whole to which one can refer during the daily, close work with technical

difficulties, provided one does not become too attached to it, but takes pains to ensure that it continues

to conform to the facts, and is prepared to abandon it when that is called for. The views of this report

are in any case not peculiarly mine. I have simply fused my own observations and reflections with

ideas of others and with commonly accepted tenets.

I have also wanted to draw attention to the specific problems, on which expert advice would

be of great help, and I hope that the report is sufficiently loosely written that someone familiar with

continuous cohomology but not with arithmetic can turn to the seventh section, overlooking the first

few pages, and see what the study of Shimura varieties needs from that theory, or that someone familiar

with Shimura varieties but not automorphic representations or motives will be able to find the definition

of the Serre group in the fourth section and the Taniyama group in the fifth, and then turn to read the

sixth section.

Finally a word about what is not discussed in this report. The investigations of Kazhdan [26] and

Shih [46] on conjugation of Shimura varieties are not reviewed; their bearing on the problem formulated

here is not yet clear. L-indistinguishability is not discussed. Little is known, and that is described in

another lecture [44]. Problems caused by noncompactness are ignored. There is a tremendous amount

of material on compactification and on the cohomology of noncompact quotients, but no one has yet

tried to bring it to bear on the study of the zeta-functions. The omission I regret most is that of a

discussion of the reduction of the Shimura varieties modulo a prime [36]. Here there is a great deal to
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be said, especially about the structure of the set of geometric points in the algebraic closure of a finite

field, starting with the work of Ihara on curves. I hope to report on this topic on another occasion.

2. Automorphic representations. Our present knowledge does not justify an attempt to fix

a language in which the relations of automorphic representations with motives are to be expressed.

Nonetheless that of tannakian categories [40] appears promising and it might be worthwhile to take

a few pages to draw attention to the problems to be solved before it can be applied in the study of

automorphic representations.

We first recall the rough classification of irreducible admissible representations of GL(n,F ), F

being a local field, and of automorphic representations of GL(n,AF ), F being a global field, reviewed

in some of the other lectures ([3], [5], [35], [48], cf. also [7], [31]). In either case the representation π

has a central character ω and z → |ω(z)|may be extended uniquely from Z(F ), or Z(AF ), to a positive

character ν of GL(n,F ), or of GL(n,AF ).

If F is a local field then π is said to be cuspidal if for any K-finite vectors u and v, in the space

of π and its dual, ν−1(g)〈π(g)u, v〉 is square-integrable on the quotient Z(F )\GL(n,F ). To construct

an arbitrary irreducible admissible representation one starts from a partition {n1, · · · , nr} of n and

cuspidal representations π1, · · · , πr of GL(ni, F ). If ωi is the central character of πi, there is a real

number si such that |ωi(z)| ≡ |z|si if z lies in the centre of GL(ni, F ), a group isomorphic to F×.

Changing the order of the partition, one supposes that s1 � · · · � sr. The partition defines a standard

parabolic subgroup P of GL(n) and σ = ⊗πi a representation of M(F ), because the Levi factor M of

P is isomorphic to GL(n1) × · · · × GL(nr). The representation σ yields in the usual way an induced

representation Iσ of G(F ). Iσ may not be irreducible, but it has a unique irreducible quotient, which

we denote π1 � · · ·� πr. Every representation is of this form and π1 � · · ·� πr � π′1 � · · ·� π′s if and

only if r = s and after renumbering πi � π′i. Thus every representation can be represented uniquely as

a formal sum, in the sense of this notation, of cuspidal representations. The representation π1 � · · ·�πr
is said to be tempered if all the si are 0. We can clearly define, in a formal manner, the sum of any finite

number of representations.

We can in fact formally define an abelian category Π(F ) whose collection of objects is the union

overn of the irreducible, admissible representations ofGL(n,F ). Ifπ = π1�· · ·�πr, π′ = π′1�· · ·�π′s,

with πi and π′j cuspidal, we set

Hom(π, π′) = ⊕
{i,j|πi∼π′

j
}
C.

The composition is obvious. The tempered representations form a subcategory Π◦(F ).
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If F is a global field then π is said to be cuspidal if π is a constituent of the representation of

GL(n,AF ) on the space of measurable cusp forms ϕ satisfying

(a) ϕ(zg) = ω(z)ϕ(g), z ∈ Z(AF ),

(b)
∫
Z(AF )G(F )\G(AF )

ν−2(g)|ϕ(g)|2dg <∞.

If n1 · · · nr is a partition of n and π1, · · · , πr cuspidal representations of GL(ni, AF ) we may again

change the order so that s1 � · · · � sr and then construct the induced representation Iσ . Every

automorphic representation is a constituent of some Iσ . For an adequate classification, one needs

more. The following statement may eventually result from the investigations of Jacquet, Shalika, and

Piatetski-Shapiro, but has not yet been proved in general.

A. If π is a constituent of Iσ and of Iσ′ then the partitions {n1, · · · , nr} and {n′1, · · · , n′s} have
the same number of elements, and, after a renumbering, ni = n′i and πi ∼ π′i.

If πi = ⊗vπi(v) then one constituent of Iσ is the representation π = ⊗vπ(v)with local components

π(v) = π1(v)� · · ·� πr(v). This representation will be denoted π = π1 � · · ·� πr , but the notation is

not justified until statement A is proved. The representations of this form will be called isobaric and

can again be used to define an abelian category Π(F ).

We agree to call π = π1 � · · ·�πr tempered if each of the cuspidal representations πi has a unitary

central character, that is, if each of the si is 0. However the language is only justified if we can prove

the following statement, the strongest form of the conjecture of Ramanujan to which the examples of

Howe-Piatetski-Shapiro and Kurokawa allow us to cling.

B. If π = ⊗π(v) is a cuspidal representation with unitary central character then each of the
factors π(v) is tempered.

The tempered representations form a subcategory Π◦(F ) of Π(F ).

It is clear that we have tried to define the categories Π(F ) and Π◦(F ) in such a way that if v is

a place of F there are functors Π(F ) → {Π(Fv) and Π◦(F ) → Π◦(Fv) taking π to its factor π(v).

However without a natural definition of the arrows, there is no unique way to define Hom(π, π′) →

Hom(π(v), π′(v)).

If Iσ is not irreducible it will have other constituents in addition toπ1�· · ·�πr . These automorphic

representations will be called anomalous. Although the principle of functoriality may apply to them,

there is considerable doubt that they can be fitted into a tannakian framework. Observe that statement

A and the strong form of multiplicity one imply that if π is any automorphic representation there is a

unique isobaric representation π′ such that π(v) ∼ π′(v) for almost all v.
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If F is a global field the purpose of the tannakian formalism would be to provide us with a

reductive group over C whose n-dimensional representations, or rather their equivalence classes, are

to correspond bijectively to the isobaric automorphic representations of GL(n,AF ). This hypothetical

group will have to be very large, a projective limit of finite-dimensional groups. We denote it byGΠ(F ).

The category Rep(GΠ(F )) of the finite-dimensional representations over C of the algebraic group

GΠ(F ) would certainly be abelian, but in addition it is a category in which tensor products can be

defined. Moreover there is a functor to the category of finite-dimensional vector spaces over C. If

(ϕ,X), consisting of the space X and the representation ϕ of GΠ(F ) on it, belongs to Rep(GΠ(F )) one

simply ignores ϕ. The tensor product satisfies certain conditions of associativity, commutativity, and

so on, and the functor, called a fibre functor, is compatible with tensor products and other operations

of the two categories.

A theorem of [40], but not the principal one, asserts that, conversely, an abelian category with

tensor products and a fibre functor is equivalent to the category of representations of a reductive group,

provided certain natural axioms are satisfied. Thus it appears that if we are to be able to introduce

GΠ(F ) we will have to associate to each pair consisting of a cuspidal representation π of GL(n,A) and

a cuspidal representation π′ of GL(n′, A) an isobaric representation π � π′ of GL(nn′, A). In general,

if π = π1 � · · ·� πr and π′ = π1 � · · · � π′s we would set

π � π′ = �
i,j
(πi � π′j).

In addition, we will have to associate to each isobaric representation π of GL(n,A), n = 1, 2, · · ·,
a complex vector spaceX(π) of dimension n, together with isomorphisms

X(π � π′) � X(π)⊕X(π′) X(π � π′) � X(π)⊗X(π′).

There are a large number of conditions to be satisfied, among them one which is perhaps worth

mentioning explicitly. Suppose π and π′ are cuspidal and π � π′ = �r
i=1πi with πi cuspidal. Then the

set {πi, · · · , πr} contains the trivial representation of GL(1, A) if and only if π′ is the contragredient of

π, when it contains this representation exactly once.

At the moment I have no idea how to define the spacesX(π); indeed, no solid reason for believing

that the functor π → X(π) exists. Even though the attempt to introduce the groupsGΠ(F ) may turn out

to be vain the prize to be won is so great that one cannot refuse to hazard it. One would like to show, in

addition, that if π and π′ are tempered then π�π′ is also, and thus be able to introduce a groupGΠ◦(F )
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classifying the tempered automorphic representations. If Ω+
F is the group of multiplicative type whose

module of rational characters is the module of positive characters of the topological group F×\IF then

GΠ(F ) will be a direct product GΠ◦(F ) × Ω+
F .

One will also wish to introduce, by a similar process, groups GΠ(F ) and GΠ◦(F ), attached to a

local field F and classifying the irreducible, admissible representations of GL(n,F ), n = 1, 2, · · ·, and

the tempered representations of GL(n,F ). The formalism is clearly intended to be such that if Fv

is a completion of F there are homomorphisms GΠ(Fv) → GΠ(F ) and GΠ◦(Fv) → GΠ◦(F ) dual to

Π(F )→ Π(Fv) and Π◦(F )→ Π◦(Fv).

If F is a local field the conjectured classification of the representations of GL(n,F ) [3], verified

when F is archimedean, provides a concrete description of the category Π(F ) with its product �. If F

is archimedean and WF is the Weil group of F then Π(F ) is equivalent to the category of continuous

semisimple representations σ of WF on complex vector spacesX . The tensor product is the usual one

(σ,X)⊗ (σ′,X ′) = (σ ⊗ σ′,X ⊗X ′) and the fibre functor is (σ,X) → X .

Thus GΠ(F ) is a kind of algebraic hull of the topological group WF . In particular there is a

homomorphism WF → GΠ(F )(C) whose image is Zariski-dense. The subcategory corresponding to

Π◦(F ) is obtained by taking only those (σ,X) for which the image of σ(WF ) is relatively compact.

If F is nonarchimedean one should take not the Weil group but a direct productW′
F = SL(2,C)×

WF .

Conjecturally at least, σ is to be replaced by a continuous, semisimple representation ofW ′
F whose

restriction to SL(2,C) is complex analytic. To obtain a category equivalent to Π◦(F ) one should take

only those σ for which σ(WF ) is relatively compact. Observe that in order to obtain a semisimple

category we have replaced the group WDF employed by Borel and Tate [47] by the group W ′
F . If

w → |w| is the usual positive character of the Weil group, there is an obvious homomorphism ofWDF

into W ′
F which takes w ∈WF ⊆ WDF to(

|w|1/2 0
0 |w|−1/2

)
× w.

Notice that according to these classifications there are homomorphisms of algebraic groups

GΠ(F ) → Gal(F̄ /F ) and GΠ◦(F ) → Gal(F̄ /F ),

the group on the right being a projective limit of finite groups. The principle of functoriality cannot be

valid unless there are similar homomorphisms when F is a global field.
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Let ΩF ,Ω+
F ,Ω

0
F , be the groups of multiplicative type whose modules of rational characters are,

respectively, the module of all characters of F×, or F×\IF if F is global, of all positive characters, or of

all unitary characters. Then ΩF = Ω+
F × Ω0

F and there will be homomorphisms

GΠ(F ) → ΩF , GΠ◦(F ) → Ω0
F .

If F is nonarchimedean and local we may also define Ωun,Ω+
un, and Ω0

un, by replacing the modules

of characters of various types by the modules of unramified characters of the same type. The groups

Ωun,Ω+
un, and Ω0

un contain a distinguished point over C, the Frobenius Φ, which is simply the image

of a uniformizing parameter in F×. In any case the formalism will certainly allow us to introduce for

any representation σ of the algebraic group GΠ(F ) over C an L-function L(s, σ) and if σ corresponds

to the representation π of GL(n,AF ) then L(s, σ) = L(s, π).

But the reasons for wishing to introduce the groups GΠ(F ) and GΠ0(F ) and the associated formal-

ism are not simply, or even primarily, aesthetic. There are problems which will be difficult to formulate

exactly without them. Suppose, for example, that π = ⊗vπv is an isobaric representation of GL(n,A)

and each of the factors πv is tempered. For almost all v, πv is unramified and associated to a conjugacy

class {gv} = {g(πv)} in GL(n,C). Since πν is supposed tempered this class meets the unitary group

U(n) and I may, as I prefer, regard it as a conjugacy class in U(n). The general analytic analogue of

the Tchebotarev theorem or the Sato-Tate conjecture would be a theorem or conjecture describing the

asymptotic distribution of the classes {gv}.

Suppose the formalism existed and π were associated to a representation σ of GΠ◦(F ). The image

σ(GΠ◦(F )(C)) would be a reductive subgroup H(C) of GL(n,C) with a maximal compact subgroup

KH . For almost all v, σv would factor through GΠ◦(Fv) → Ω0
un and σv(Φv) would be defined. Since

its conjugacy class in H(C) would meet KH , it would define a conjugacy class in KH , which we

denote {σv(Φv)}. Of course {σv(Φv)} ⊆ {gv} and the asymptotic distribution of the classes {gv} can

be inferred from that of the classes {σv(Φv)}. There is a natural probability measure on the space of

conjugacy classes in KH . If X is a set of conjugacy classes and if the set Y = ∪x∈Xx is measurable

in KH , one takes meas X = meas Y . It is natural to suppose that it is this measure which defines

the asymptotic distribution of the classes {σv(Φv)}. To verify the supposition, it will be necessary to

establish that if ρ is any representation of GΠ◦(F ) over C then the order of the pole of L(s, ρ) at s = 1

is equal to the multiplicity with which the trivial representation of GΠ◦(F ) occurs in ρ. If the existence

of GΠ◦(F ) were established, it would be easy enough to deduce this from the recent results of Jacquet

and Shalika [25].
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Within this formalism, the principle of functoriality asserts that if F is a local field and G a

reductive group overF then anyL-packet of representations ofG(F ) is associated to a homomorphism

ϕ : GΠ(F ) → LG of algebraic groups over C for which

GΠ(F )
ϕ−−−→ LG

↘ ↙
Gal(F/F )

is commutative. IfGΠ(F ) is replaced byGΠ◦(F ), the L-packet should be tempered. If F is global, some

caution will have to be exercised. If the L-packet Π consists of π = ⊗πv for which the πv are always

tempered, it should correspond to a ϕ : GΠ◦(F ) → LG. Otherwise this may not be so, for a reason

which will perhaps be clearer after an example of Kurokawa [29] is discussed in the next section. If

there is a representation

ψ : LG→ GL(n)× Gal(F̄ /F )

and if the image ψ∗(Π) of Π given by the principle of functoriality is not isobaric then Π can be

associated to no ϕ.

One may nonetheless hope to prove, both locally and globally, that to each ϕ : GΠ(F ) → LG is

associated an L-packet, provided ϕ commutes with the homomorphisms to the Galois group. If G is

not quasi-split the local behaviour of ϕ with respect to parabolic subgroups will also have to be taken

into account [3]. For archimedean fields one recovers the usual classification.

The few examples studied [44] suggest that questions about the multiplicity with which elements

of Π occur in the space of automorphic forms will have to be answered in terms of ϕ.

The principal reason for wishing to define the group GΠ(F ) is that it provides the only way

visible at present to express completely the relation between automorphic forms and the conjectural

theory of motives [40]. The category of motives over F , a local or a global field, is Q-linear and

tannakian, but it does not always possess a fibre functor over Q and seldom a single naturally defined

one. Thus tannakian duality associates to it not a group over Q but a group-like object, a “gerbe” in

the rustic terminology which has become so popular in recent years. Over C this object becomes a

group GMot(F ), and the relations between motives and automorphic representations will probably be

adequately expressed by the existence of a homomorphism ρF : GΠ(F ) → GMot(F ) defined over C.

The field F can be local or global. The local and global homomorphisms are to be compatible with

each other and with the formation of L-functions. Both the image and the kernel of ρF will probably

be rather large when F is a number field (cf. C.6.2 of [43]) but rather small when F is local.
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3. Anomalous representations. Since the anomalous representations cause some difficulty in

the study of the zeta-functions of Shimura varieties, it will be useful to acquire some feeling for them

before going on. The brief remarks of the previous section suggest that an automorphic representation

π of the reductive group G, or rather the L-packet Π containing it, should be called anomalous if for

some homomorphism ψ : LG → GL(n,C) × Gal(F̄ /F ) the principle of functoriality takes π or Π

to an anomalous representation of GL(n,A). It may be that the counter-examples to the Ramanujan

conjecture of Howe-Piatetski-Shapiro [19] are anomalous in this sense.

Since their paper is not available to me as I write, I have to test this suggestion on another example,

discovered by Kurokawa and quite explicit. The group G is to be the projective symplectic group in

four variables over Q. The L-group is then the direct product of LG◦, the symplectic group in four

variables and the Galois group Gal(Q̄/Q). Since all the groups with which we shall deal in this section

will be split, we may ignore the factor Gal(Q̄/Q).

Let G1 be the product of PGL(2) over Q with itself, so that LG◦
1 = SL(2,C) × SL(2,C) and let

G2 be GL(4) over Q. Define ϕ1 : LG◦
1 → LG to be the homomorphism

(
α1 β1

γ1 δ1

)
×
(
α2 β2

γ2 δ2

)
→



α1 0 β1 0
0 α2 0 β2

γ1 0 δ1 0
0 γ2 0 δ2




and let ϕ2 be the standard imbedding of LG◦ in LG◦
2 which is GL(4,C).

In order to analyze Kurokawa’s example one must formulate his statements representation-

theoretically. I state the facts necessary to this purpose, but have to ask that the reader understand the

discrete series sufficiently well to verify them for himself. There is nothing to prove. It is simply a

question of writing down explicitly for the special case of concern to us here some of the results of [17]

and [18], and some definitions from [31].

An automorphic representation π = ⊗πv of G(A) is associated to a holomorphic form of weight

k in the classical sense of [39] if and only if π∞ is a member of the holomorphic discrete series and lies

in an L-packet Πψ(k), where the restriction of ψ(k) to C× ⊆ WC/R has the form

z →



zλz̄−λ

zµz̄−µ

z−λz̄λ

z−µz̄µ




with λ = (2k − 3)/2, µ = 1
2 . Since G is the projective group, k must be even. Notice that zλz̄−λ is to

be calculated as z2λ(zz̄)−λ = z̄−2λ(zz̄)λ. We will eventually take k = 10.



Automorphic representations 10

On the other hand an automorphic representation π = ⊗πν of PGL(2,A) is associated to a

holomorphic form of weight 2k − 2 if and only if π∞ belongs to the discrete series and to an L-packet

Πϕ(k), where

ϕ(k) : z →
(
zλz̄−λ

z−λz̄λ

)
with λ as above. In particular ϕ1 takes the L-packet Πϕ(k) ⊗ Πϕ(2), consisting in fact of a single

representation, to Πψ(k).

We want to apply the principle of functoriality toϕ1 and a very special automorphic representation

π of G1(A). π must be a tensor product π′ ⊗ π′′ of two representations of PGL(2,A). π′∞ and π′′∞

will both be members of the discrete series, the first in Πϕ(10) and the second in Πϕ(2). In fact π′ will

be the automorphic representation associated to the cusp form of weight 18, but π′′ will be anomalous

or, to be more exact, its pull-back π̃′′ to GL(2,A) will be anomalous. To construct it we begin with the

partition {1, 1} of 2 and the two characters

η : x→ |x|1/2, ν : x→ |x|−1/2

of GL(1,A), and then construct the induced representation of GL(2,A) as in the preceding section.

Any constituent π̃′′ of the induced representation factors through a representation π̃′′ of PGL(2,A).

We so choose π̃′′ that π′′∞ ∈ Πϕ(2) while π̃′′p = ηp � νp for all p. The representation π̃′′ is clearly

anomalous.

The representation π is unramified. Thus the automorphic representation π◦ of G(A) lies in the

L-packet ϕ1∗({π}) defined by π,ϕ1 and the principle of functoriality if π◦p is unramified for all p and

π◦p ∈ ϕ1∗({πp}), and π◦∞ is in Πψ(10). We take π◦ to be the representation defined by the cusp form χ10

of weight 10 [39]. Then π◦∞ lies in Πψ(10) . According to the definitions [3] the relation π◦p ∈ ϕ1∗({πp})
is a statement about eigenvalues of Hecke operators. These statements have been verified for small

primes by Kurokawa [29]. The necessary equalities are too complicated to be merely coincidences, and

we may assume with some confidence that π◦ ∈ ϕ1∗({π}).

In any case the representation π◦ certainly is a counterexample to Ramanujan’s conjecture. If

ϕ = ϕ2 ◦ ϕ1 then the principle of functoriality yields the same L-packet when applied to π and ϕ as it

does when applied to π◦ and ϕ2. SinceG2 is GL(4) the L-packet consists of a single representation. It

is easily seen to be anomalous and to be equivalent almost everywhere to the isobaric representation

π′ � η � ν. Thus π◦ itself is anomalous in the sense described at the beginning of the section.

4. Shimura varieties. In this section we review the definition of Shimura varieties, taken for

now over C, and their relations with motives. The point of view is Deligne’s and most of what follows
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has been taken from his papers [9], [10], or learned in conversation with him. Of course the book of

Saavedra Rivano [40] has again been a basic reference; many of the facts and definitions below will be

found in it.

Recall that the data needed to define a Shimura variety are a connected reductive group G over

Q and a homomorphism h : R → G defined over R. The symbol R is used to denote the group

ResC/RGL(1). Thus we have a canonical isomorphism GL(1)×GL(1) � R over C and we may speak

of the restriction of h to the first or the second factor. It is not h which matters but the set

H = {Ad g ◦ h | g ∈ G(R)}

and it will be best simply to let h denote an arbitrary element of H.

Recall that the pair (G,h) is subject to three conditions [10, §1.5]:

(a) If w is the diagonal map GL(1)→ GL(1)×GL(1) then the homomorphism h ◦w is central.

(b) The Lie algebra G of G(C) is a direct sum G = p + k + p̄ and if (z1, z2) ∈ R(C) then

ad h(z)(X) = z−1
1 z2X, X ∈ p,

= X, X ∈ k,
= z1z

−1
2 X, X ∈ p̄.

In fact the summands p, k, and p̄ vary with h, and when it is useful to make the dependence on h

explicit we write ph, kh, and p̄h.

(c) The adjoint action of h(i,−i) on the adjoint group is a Cartan involution.

SinceG(R) acts on the real manifold H by conjugation every element of G defines a complex vector

field on H. Let Xh be the value of the vector field associated to X at h ∈ H. The complex structure

on H is so defined that the holomorphic tangent space at h is {Xh | X ∈ p̄} and the antiholomorphic

tangent space is {Xh | X ∈ p}.

If Af is the ring of adèles over Q whose component at infinity is 0 and K is an open compact

subgroup of G(Af ) then G(Af )/K is discrete and XK = H × G(Af )/K is a complex manifold on

which G(Q) acts to the left. If K is sufficiently small then any γ ∈ G(Q) with a fixed point lies in

Z(Q) ∩K and thus fixes the whole manifold. We shall always assume that K is sufficiently small and

then

ShK(C) = G(Q)\H×G(Af )/K

is a complex manifold, proved by Baily-Borel to be the set of complex points on an algebraic variety

ShK = ShK(G,h) = ShK(G,H) over C.
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Deligne anticipates that ShK will often be a moduli space for a family of motives over C. This is

sometimes so, the motives then being those attached to abelian varieties, but can certainly not yet be

proved in general. Nonetheless there is a good deal to be learned from a rehearsal of the considerations

that suggest such an interpretation of ShK . In essence one observes that ShK(C) is the parameter space

for a family of polarized Hodge structures; the difficulty is to show that these Hodge structures all arise

from motives.

A real Hodge structure V is a finite-dimensional vector space VR over R together with a decom-

position of its complexification VC = ⊕p,q∈ZV
p,q, satisfying V q,p = V̄ p,q. The collection of real Hodge

structures forms a tannakian category over R whose associated group is R. Indeed to a real Hodge

structure V , one associates the representation σ of R defined by

(4.1) σ(z1, z2)v = z−p
1 z−q

2 v, v ∈ V p,q.

The relations V q,p = V̄ p,q imply that σ is defined over R. Conversely each representation of R that is

defined over R yields a Hodge structure, the elements of V p,q being defined by (4.1). The real Hodge

structure V is said to be of weight n if V p,q = 0 whenever p+ q �= n. Certainly any Hodge structure is

a direct sum V = ⊕nV
n with V n of weight n.

We are however interested in the category of polarized rational Hodge structures. A rational Hodge

structure V is formed by a finite-dimensional vector space VQ over Q, a direct sum decomposition

VQ = ⊕V n
Q , and real Hodge structures of weight n on V n

R = V n
Q ⊗Q R. There is a distinguished

object of weight −2, the Tate object Q(1), in the category of rational Hodge structures. The underlying

rational vector space is Q(1)Q = 2πiQ ⊆ C and, by definition,

Q(1)−1,−1 = Q(1)C.

It seems to be customary to identify the underlying vector space of Q(n) = Q(1)⊗n with (2πi)nQ and

Q(n)R with (2πi)nR ⊆ C. The factors 2πi have been chosen for reasons which need not concern us. It

is no trouble to carry them along.

If V is a rational Hodge structure and σ the associated representation of R let C be σ(−i, i) acting

on VR. If V is of weight n, a polarization of V is a bilinear form P : V × V → Q(−n) satisfying:

(a) For all u and ν in VC and all r ∈ R(C)

P (σ(r)u, σ(r)ν) = σ(r)P (u, ν).

Thus the form is compatible with the Hodge structures.
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(b) P (v, u) = (−1)nP (u, v).

(c) The real-valued form (2πi)nP (u,Cv) on VR is symmetric and positive-definite.

A rational Hodge structure is said to be polarizable if each of its homogeneous components admits

a polarization, a polarization of the full structure being defined by polarizations of the homogeneous

components. The category HOD(Q) of polarizable Hodge structures is tannakian, with a natural fibre

functor ωHod : V → VQ and an associated group GHod, reductive but overwhelmingly large. It does

have factor groups of manageable size.

If V is a polarizable rational Hodge structure, one may take the tannakian category generated by

V and Q(1) and the repeated formation of duals, sums, tensor products, and subobjects. The associated

group is called the Mumford-Tate group of V and denoted by MT (V ). It is finite-dimensional and

reductive, and there is a surjection GHod → MT (V ) defined over Q. If σ is the representation of R
attached to V then MT (V ) is simply the smallest subgroup of the group of automorphisms of the

rational vector space underlying V which contains σ(R) and is defined over Q [37]. It is consequently

connected.

The polarizable rational Hodge structures for which MT (V ) is abelian play a particularly impor-

tant role in the study of Shimura varieties. They are said to be of CM type. The second description of

the groups MT (V ) shows that the category of such Hodge structures is closed under sums and tensor

products and thus is a tannakian category. The associated group has been studied at length in [41] and

is often called the Serre group. At the risk of making a comparison with [41] difficult, for Serre himself

employs a different notation, we shall denote the group by S .

It is not difficult to describe S . Let Q̄ be the algebraic closure of Q in C and let ι ∈ Gal(Q̄/Q) be

complex conjugation. To construct X∗(S), the module of rational characters of S , we start with the

module M of locally constant integral-valued functions on Gal(Q̄/Q). The Galois group acts by right

translation and

X∗(S) = {λ ∈M | (σ − 1)(ι+ 1)λ = (ι+ 1)(σ − 1)λ = 0 ∀σ ∈ Gal(Q̄/Q)}.

In particular if λ ∈ X∗(S),

(σ − 1)λ(1) + (σ − 1)λ(ι) = 0

because the left side if (ι+1)(σ−1)λ(1). The lattice of rational characters ofR is canonically isomorphic

to Z⊕Z and the homomorphism h0 : R → S dual to the homomorphismX∗(S)→ X∗(R)which sends
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λ to (λ(1), λ(ι)) is defined over R. The composite h ◦ w : GL(1) → S is dual to the homomorphism

X∗(S)→ Z taking λ to λ(1) + λ(ι) and is defined over Q.

To verify that the group S just defined in terms of its module of characters is the Serre group

defined in terms of Hodge structures is easy enough. The existence of the two homomorphisms h0

and h0 ◦ w implies that every representation of S defined over Q defines a rational Hodge structure.

It is enough to show that these are polarizable when the representation is irreducible. To obtain the

irreducible representations, one takes a λ ∈ X∗(S) and defines the field F by

Gal(Q̄/F ) = {σ ∈ Gal(Q̄/Q) | σλ = λ}.

The underlying space of the representation is the vector space over Q defined by F , and the represen-

tation r = rλ is that defined symbolically by rλ(s) : x ∈ F → λ(s)x. The weight of the associated

Hodge structure is −(λ(1) + λ(ι)) = n. There is an α ∈ F such that ι(α) = (−1)nα and (−1)λ(ι)inα

is totally positive. A possible polarization is

P (u, ν) = (2πi)−nTrF/Quαι(ν).

Conversely suppose one has a rational Hodge structure V whose Mumford-Tate group MT (V )

is abelian. Since there is a homomorphism R → MT (V ), the coweight GL(1) → R of the group R

defined by z → (z, 1) also defines a coweight ν∨ of MT (V ). The lattice Y∗ of coweights of MT (V ) is

a Gal(Q̄/Q) module generated by ν∨. We define an injective homomorphism of its lattice of rational

characters V ∗ into X∗(S) by sending ν ∈ Y ∗ to the element λ given by

λ(σ) = 〈σν, ν∨〉, σ ∈ Gal(Q̄/Q).

The dual homomorphism S → MT (V ) is surjective and V is defined by a rational representation of

S .

We return to the Shimura varieties ShK(C) and show how one attaches families of rational Hodge

structures toShK(C). LetG0 be the largest quotient ofG such that (σ−1)(ι+1)ν∨ = (ι+1)(σ−1)ν∨ = 0

for every coweight of the centre ofG0. Let ξ be a rational representation ofG onV which factors through

G0.

To each x = (h, g) inXK we associate a triple (V x, kx, ϕx). V x is a rational Hodge structure whose

underlying space is V x
Q = VQ, the Hodge structure being defined by the representation ξ ◦ h of R. The

third term ϕx is an isomorphism V x
Af

→ VAf
and is given by ν → ξ(g)−1ν. It is only defined up to
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composition with an element of ξ(K). The homogeneous components of V x
Q are independent of x and

may be written V n
Q . It follows from Lemma 2.8 of [11] that if x ∈ XK there is at least one collection Px

of bilinear forms Px
n : V n

Q × V n
Q → Q(−n)Q which is invariant under the derived group of G and is a

polarization of V x. Let Px denote the collection of all such polarizations. If g ∈ G(Q), Px ∈ Px, and

x′ = γx then the collection Px′
given by P x′

n : (u, v) → P x
n (ξ(γ

−1)u, ξ(γ−1)v) lies in Px′
.

We must also verify that the family {V x} over XK is a family of rational Hodge structures in the

sense of [9]. Otherwise it could not possibly be attached to a family of motives. There are two points to

be verified. Let V x
p,q be the subspace of V x

C of type p, q and set V x
p = ⊕p′�pV

x
p′,q′ . The space V x

p ⊆ VC

must be shown to vary holomorphically with x. In other words if v(x) is any local section of Vx
p and Y

any antiholomorphic vector field then Y v(x) also takes values in V x
p . The condition of transversality

must also be established, to the effect that for the same v(x) and any holomorphic vector field Y the

values of Y v(x) lie in V x
p−1.

There is certainly no harm in supposing that v(x) takes values in Vx
p,q. Then one has to show that if

x◦ = (h◦, g◦f ) is fixed and Y is the vector field defined byX ∈ G then Y v(x◦) lies in V x
p whenX ∈ ph◦

and in V x
p−1 when X ∈ p̄h◦ . Let Kh◦ be the stabilizer of h◦ in G(R). We represent XK as the quotient

G(A)/Kh◦K and lift v(x) to a function on G(A) which we write as

(g, gf) → ξ(g)u(g, gf), g ∈ G(R), gf ∈ G(Af ).

The function u takes values in the constant space V x◦
p,q . Moreover

Y v(x◦) = ξ(X)u(1, g◦f) +Xu(1, g◦f).

The second term lies in V x◦
p,q for all X ∈ G. If X ∈ p then ξ(X)V x◦

p,q ⊆ V x◦
p+1,q−1 and if X ∈ p̄ then

ξ(X)V x◦
p,q ⊆ V x◦

p−1,q+1.

If γ ∈ G(Q) and x′ = γx then v → ξ(γ)v provides an isomorphism between (V x,Px, ϕx) and

(V x′
,Px′

, ϕx′
). Thus if s ∈ SK(C), any two elements of {(V x,Px, ϕx) | x → s} are canonically

isomorphic, and we may take (V s,Px, ϕs) to be any one of them, and redefine our family as a family

of rational Hodge structures, with supplementary data, over the base SK(C). The locally constant

sheaf Fξ(Q) of rational vector spaces underlying this family is the quotient of VQ ×XK by the action

γ : (v, x) → (ξ(γ)v, γx) ofG(Q). For this quotient to be well defined, the groupK must be sufficiently

small, for G(Q) ∩KhK is then contained in the kernel of ξ for all h (cf. II.A.2 of [41]). It is here that

the condition that ξ factors through G0 intervenes.
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When dealing with motives, one does not need to introduce the polarizations explicitly as part

of the moduli problem, but in order to introduce a Hodge structure on the cohomology groups of the

sheaves Fξ(Q) one must verify that on each connected component of SK(C) a locally constant section

s → P s can be defined. Let G0(R) be the connected component of G(R) and choose x◦ = (h, gf) in

XK . If

X◦
K = {(Ad g ◦ h, gfk) | g ∈ G◦(R), k ∈ K}

then the image of X◦
K in SK(C) is open. If x and x′ lie in X◦

K and x′ = γx then γ lies in

(4.2) G(Q) ∩G◦(R)KhgfKg
−1
f .

All we need do is find a collection P = {Pn} such that P ∈ Px for all x ∈ X◦
K and Pn(ξ(γ)u, ξ(γ)ν)

= Pn(u, ν) if γ lies in the group (4.2). Choose any P in Px◦
. Then P ∈ Px for all x ∈ X◦

K . There are

certainly homomorphisms λn of G into the general linear group of V n such that

Pn(ξ(γ)u, ξ(γ)v) = Pn(λn(γ)u, v).

The eigenvalues of λ(γ) are positive if γ lies in G◦(R)Kh. Moreover λ is trivial on the derived group

of G and factors through G0. It therefore follows from the results of II.A.2 of [41] that each λn is the

identity on all of (4.2).

Although we have defined the families (V s,Ps, ϕs) for any G, it is clear that SK(C) is not going

to appear as a moduli space unless G is equal to G0, and so for the rest of this section we assume this.

The moduli problem is best formulated completely in the language of tannakian categories. We can

drop the polarizations and retain only the pairs (V s, ϕs), or (V x, ϕx), but we now have to emphasize

that (V x, ϕx) is defined for every (finite-dimensional) representation ξ of G over Q, and so we write

(ξ, V (ξ)) for the representation and (V x(ξ), ϕx(ξ)) for the pair (V x, ϕx).

On the category REP(G) of finite-dimensional representations of G we have the natural fibre

functor ωRep(G) : (ξ, V (ξ)) → V (ξ)Q and ηx : (ξ, V (ξ)) → V x(ξ) is a ⊗-functor from REP(G)

to HOD(Q) which satisfies ωHod ◦ ηx = ωRep(G). Since HOD(Q) and REP(GHod) are the same

categories, ηx defines a homomorphism [40, II.3.3.1] ϕx : GHod → G and ηx may be defined by

(ξ, V (ξ)) → (ξ ◦ ϕx, V (ξ)). When we emphasize ηx, ϕx appears as an isomorphism of two fibre

functors

ϕx : ω
Af

Hod ◦ ηx → ω
Af

Rep(G).
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However, when we emphasize ϕx, as we shall, then these two fibre functors are the same, for they

are both obtained from ωHod ◦ ηx = ωRep(G) by tensoring with Af , and ϕx may be interpreted as an

isomorphism of ωAf

Rep(G)
. Such an isomorphism is given by a g−1 ∈ G(Af ) [40, II.3]. This is the g

appearing in x = (h, g). Only the coset gK ⊆ G(Af ) is well defined.

We have arrived, by a rather circuitous route, at the conclusion thatXK parametrizes pairs (ϕ, g), ϕ

being a homomorphism from GHod to G defined over Q, and g in G(Af ) being specified only up to

right multiplication by an element of K . In addition, ϕ is subject to the following constraint:

H. The composition of ϕ with the canonical homomorphism R→ GHod lies in H.

If γ ∈ G(Q) the pairs (ϕ, g) and (ad γ ◦ ϕ, γg) will be called equivalent. The variety ShK(C)

parametrizes equivalence classes of these pairs.

One of the important tannakian categories is the category MOT (k) of motives over a field k. It

cannot be constructed at present unless one assumes certain conjectures in algebraic geometry, referred

to as the standard conjectures [40]. It is covariant in k, and rational cohomology together with its

Hodge structure yields a ⊗-functor hBH : MOT (C) → HOD(Q). MOT (C) together with the fibre

functor ωMot(C) of rational cohomology also defines a group GMot(C) over Q and hBH is dual to a

homomorphism h∗BH : GHod → GMot(C) defined over Q.

Implicit in Deligne’s construction is the hope that any homomorphism ϕ′ : GHod → G satisfying

H is a composite ϕ′ = ϕ ◦ h∗BH . According to the Hodge conjecture, ϕ would be uniquely determined

[40, VI.4.5] and ShK(C) would appear as the moduli space for pairs (ϕ, g), with g as before, but where

ϕ is now a homomorphism from GMot(C) to G defined over Q and satisfying:

H′. The composition of ϕ with the canonical homomorphism R → GMot(C) lies in H.

This may be so but it will not be a panacea for all the problems with which the study of Shimura

varieties is beset. So far as I can see, we do not yet have a moduli problem in the usual algebraic sense,

and, in particular, no way of deciding over which field the moduli problem is defined. We can be more

specific about this difficulty.

Suppose τ is an automorphism of C. Then τ−1 defines a⊗-functor η(τ) : MOT (C) →MOT (C).

Let Gτ
Mot(C) be the group defined by MOT (C) and the fibre functor ωMot(C) ◦ η(τ). The dual of η(τ)

is then an isomorphism over Q:

ϕ(τ) : GMot(C) → Gτ
Mot(C).



Automorphic representations 18

The homomorphism ϕ has a dual, a ⊗-functor η : REP(G) → MOT (C) and the fibre functor

ωMot(C) ◦ η(τ) ◦ η defines a group Gτ,ϕ over Q. The ⊗-functor η then defines a dual

ϕτ : Gτ
Mot(C) → Gτ,ϕ, and ϕ′ = ϕτ ◦ ϕ(τ) : GMot(C) → Gτ,ϕ.

Moreover the two fibre functors ωAf

Mot(C)
and ωAf

Mot(C)
◦ η(τ) are canonically isomorphic. As a conse-

quence, there is a canonical isomorphism G(Af ) → Gτ,ϕ(Af ). Let g′ be the image of g.

The pair (ϕ′, g′) seems once again to define a solution to our moduli problem. The difficulty is that

Gτ,ϕ may not be the group G or, even if it is, the composition of ϕ′ with the canonical homomorphism

may not lie in H. One of the purposes of the next two sections is to discover what Gτ,ϕ is likely to be.

5. The Taniyama group. There is one type of Shimura variety which is very easy to study,

that obtained when G is a torus T . Then the set H reduces to a single point {h}. For each open

compact subgroup U of T (Af ) the manifold ShU (C) consists of a finite set and ShU = ShU (T, h) is

zero-dimensional. In general a special point of (G,H) will be a pair (T, h) with T ⊆ G and h ∈ H.

If U = K ∩ T (Af ) then ShU (C) is a subset of ShK(C), the points of which have traditionally been

referred to as special points, and I shall continue this usage. But it is best to give priority to the pair

(T, h) rather than to the points of ShK(C) it defines. There are a number of unsolved problems about

Shimura varieties and their special points that I want to describe in the next section. To formulate them

some Galois cocycles have to be defined. Deligne has shown me that my original construction gave,

in particular, a specific extension of Gal(Q̄/Q) by the Serre group, S , an extension I venture to call the

Taniyama group and denote by T . Since the cocycles needed are, as Rapoport observed, often easily

defined in terms of T , I begin by constructing it.

The group S is an algebraic group over Q, and T will also be defined over Q. Thus we will have

an exact sequence

(5.1) 1 → S → T → Gal(Q̄/Q) → 1.

Recall thatX∗(S) is a module of functions on Gal(Q̄/Q), and that the Galois action onX∗(S) giving the

structure of S as a group over Q is defined by right translation. We are still free to use left translation

to define an algebraic action of Gal(Q̄/Q) on S , and it is this action which is implicit in (5.1). The

extension will not split over Q but it will be provided with canonical splittings over each :-adic field

Q$, Gal(Q̄/Q) → T (Q$), which will fit together to give Gal(Q̄/Q) → T (Af ).
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Rather than attempting to work directly with S , I choose a finite Galois extension L of Q, let SL be

the quotient group of S whose lattice of rational characters consists of all functions inX∗(S) invariant

under G(Q̄/L), and define extensions

(5.2) 1 → SL → T L → Gal(Lab/Q) → 1,

afterwards lifting to Gal(Q̄/Q), and then passing to the limit.

To motivate the construction we suppose that the extension is defined and that there is a section

τ → a(τ) of T L → Gal(Lab/Q) with a(τ) ∈ T L(L). Let a(τ1)a(τ2) = dτ1,τ2a(τ1τ2) with dτ1,τ2 ∈
SL(L), and with

(5.3) τ1(dτ2,τ3)dτ1,τ2τ3 = dτ1,τ2dτ1τ2,τ3 .

Observe that the elements of the Galois group play two different roles. They are first of all elements of

a quotient group of T L, and secondly they are automorphisms of Lab and thus act on T L(Lab), since

T L is defined over Q. In the first role they will be denoted by τ , perhaps with a subscript added, and

in the second by ρ or σ.

We have ρ(a(τ)) = cρ(τ)a(τ) with cρ(τ) ∈ SL(L). Certainly

(5.4) cρσ(a(τ)) = ρ(cσ(τ))cρ(τ).

In addition

(5.5) dτ1,τ2cρ(τ1)τ1(cρ(τ2)) = ρ(dτ1,τ2)cρ(τ1τ2).

Conversely if we have collections {cρ(τ)} and {dτ1,τ2} satisfying (5.3), (5.4) and (5.5), we can construct

T L over Q, together with the section a.

Any splitting Gal(Lab/Q) → T (Af ) will be of the form τ → b(τ)a(τ) with b(τ) ∈ SL(Af (L)). In

order that it be a splitting, we must have

(5.6) b(τ1)τ1(b(τ2))dτ1,τ2 = b(τ1τ2).

If the b(τ)a(τ) are to lie in T L(Af ) we must have

(5.7) ρ(b(τ))cρ(τ) = b(τ).
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Again any collection {b(τ)} satisfying (5.6) and (5.7) defines a splitting, and it is our task to construct

{b(τ)}, {cρ(τ)}, and {dτ1,τ2}.

The group S is a quotient ofGHod and thus is provided with a canonical homomorphism h : R →
S . Over C the group R is canonically isomorphic to GL(1) × GL(1). Restricting h to the first factor

we obtain a coweight µ of S , the canonical coweight. If λ ∈ X∗(S) then 〈λ, µ〉 = λ(1). Since SL is

a quotient of S , µ also defines a coweight of SL, which for convenience will also be denoted by µ. If

ν is any coweight of SL and x any invertible element of L or of Af (L) then xν will be the element of

SL(L), or SL(Af (L)), satisfying λ(xν) = x〈λ,ν〉 for all λ ∈ X∗(SL). Recall that we have two actions

of Gal(L/Q), or Gal(Lab/Q), on X∗(SL) or on

X∗(SL) = Hom(X∗(SL),Z),

the lattice of coweights. That defined by right translation we write ν → σν, and that defined by

left translation we write ν → ντ . Thus 〈λ, σν〉 = λ(σ−1) while 〈λ, µτ〉 = λ(τ), because an inverse

intervenes in the action by left translation, and µτ−1 = τµ. Moreover σ(xµ) = σ(x)σµ while τ(xµ) =

xµτ . These aspects of the notation have to be emphasized because at some points our convention of

distinguishing between ρ, σ on the one hand, and τ on the other, fails us.

For the study of Shimura varieties, it is best to take Q̄ to be the algebraic closure of Q in C, and we

shall do this. Thus we provide ourselves with an extension of the infinite valuation on Q to Q̄. There

is a property of the Weil groups that will play a prominent role in our discussion. Let v be a valuation

of Q̄ and hence of Q, and let Qv and Q̄v be the completions of Q and Q̄ with respect to v. Eventually

v will be defined by the inclusion Q̄ ⊆ C, and Qv will be R and Q̄v will be C. In any case, the data

provide us with imbeddings

F×
v ↪→ CF(5.8)

Gal(Fv/Qv) ↪→ Gal(F/Q),(5.9)

if F is any finite Galois extension of Q in Q̄. The local and global Weil groups WFv/Qv
and WF/Q are

defined as extensions

1 → F×
v →WFv/Qv

→ Gal(Fv/Qv)→ 1

and

1 → CF →WF/Q → Gal(F/Q)→ 1.
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We may imbed the arrows (5.8) and (5.9) in a commutative diagram

1 → F×
v → WFv/Qv

→ Gal(Fv/Qv) → 1� �IF �
1 → CF → WF/Q → Gal(F/Q) → 1

Moreover we may so choose the central arrows that they are compatible with field extensions and upon

passage to the limit yield I: WQv
→ WQ. It is the image of WQv

in WQ that will be fixed, and IF may

be changed to w → xIF (w)x−1 where x ∈ CF and xσ(x)−1 ∈ F×
v for all σ ∈ Gal(Fv/Qv).

Now let v be the valuation given by Q̄ ⊆ C. LetF×
∞ =

∏
w|v F

×
w . The natural map F×

∞ → CF is an

imbedding, and we sometimes regard F×
∞ as a subgroup of CF . If we take an element τ of Gal(Q̄/Q),

lift to WQ, and then project to WL/Q we obtain an element w = w(τ) of WL/Q which is well defined

modulo the connected component, and in particular modulo the closure of L×∞.

We choose a set of representatives wσ , σ ∈ Gal(L/Q), for the cosets of CL inWL/Q in such a way

that the following conditions are satisfied:

(a) w1 = 1.

(b) If σ ∈ Gal(Lv/Qv) then wσ ∈ WLv/Qv
.

(c) If ρ ∈ Gal(L/Q) and σ ∈ Gal(Lv/Qv) then wρwσ = aρ,σwρσ with aρ,σ ∈ L×
∞.

To arrange the final condition we may choose a collection of f of representatives η for the cosets

Gal(L/Q)/Gal(Lv/Qv) and set wησ = wηwσ if σ ∈ Gal(Lv/Qv). We suppose that f contains 1. With

this choice we also have:

(d) If {aρ,σ} is the cocycle defined by wρwσ = aρ,σwρσ then aη,ρ = 1 for η ∈ f and σ ∈

Gal(Lv/Q).

If w ∈WL/Q, let wσw = cσ(w)wσ, cσ(w) ∈ CL. If w = w(τ) we set

b0(τ) =
∏

σ∈ Gal(L/Q)

cσ(w)σµ.

It lies in CL ⊗X∗(SL), but is not well defined, because w is not. However we can show that it is well

defined if taken modulo L×
∞ ⊗X∗(SL), and that, in addition, it behaves properly under extensions of

the field L.

The ambiguity in w now has no effect, for we are only free to replace w by uw where u = limn un

and un lies in the image of L×
∞U , where U is a subgroup of the group of units of L defined by a strong

congruence condition. But [41, II.A.2], ∏
σ∈Gal(

¯Q/Q)

σ(u)σµ = 1
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for all u ∈ U . Consequently

∏
σ

cσ(uw)σµ =

(∏
σ

σ(u)σµ
)(∏

σ

cσ(w)σµ
)

is congruent modulo L×
∞ ⊗X∗(SL) to

∏
σ cσ(w)

σµ.

Suppose the representatives wσ are replaced by eσwσ , and, hence, aρ,σ by

a′ρ,σ = eρρ(eσ)e−1
ρσ aρ,σ.

If σ ∈ Gal(Lv/Qv) then eσ ∈ L×
v and ρ(eσ) ∈ L×

∞. Since aρ,σ and a′ρ,σ must then both be in

L×
∞, we infer that eρ ≡ eρσ(mod L×

∞) when σ ∈ Gal(Lv/Qv). Moreover cσ(w) is replaced by

c′σ(w) = eστe
−1
σ c(w) and b0(τ) by

b′0(τ) =

{∏
σ

eσµστ e
−σµ
σ

}
b0(τ).

The factor may be written

∏
σ

eσ(τ−1−1)µ
σ ≡

∏
τ∈f

∏
σ∈Gal(Lv/Qv)

eησ(τ−1−1)µ
η .

Since ∑
σ∈ Gal(Lv/Qv)

σ(1− τ−1)µ = (1 + ι)(1− τ−1)µ = 0,

this change has no effect on b0(τ). In this argument we have denoted the image in Gal(L/Q) of

τ ∈ Gal(Q̄/Q) by the same symbol, a practice we shall continue to indulge in.

If we modify I thenw is replaced byxwx−1 withx ∈ CL andxσ(x)−1 ∈ L×
v for allσ ∈ Gal(Lv/Q).

Then cσ(xwx−1) = σ(x)στ(x−1)cσ(w) and

∏
σ

σ(x)−σµστ(x)σµ =
∏
σ

σ(x)σ(τ−1−1)µ.

Since σ(x) ≡ x(modL×
∞) if σ ∈ Gal(Lv/Qv), the same argument as before shows that b0(τ) is

unchanged.

Finally suppose that L ⊆ L′. Then b′0(τ) ∈ CL ⊗ X∗(SL′
) and b0(τ) ∈ CL ⊗ X∗(SL) are both

defined, and we must verify that b′0(τ) is taken to b0(τ) by the canonical mapping of the first group

to the second. Either Lv = R or Lv = C, and the two cases must be treated separately. Suppose

first that Lv = C and hence that Gal(L′/L) ∩ Gal(L′
v/Qv) = {1}. Since both b0(τ) and b′0(τ) are
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independent of the choices of coset representatives, we may choose those which make it easiest to

verify that b0(τ) is the image of b′0(τ) is the image of b′0(τ). Let e be a set of representatives for

the cosets Gal(L′/L)\Gal(L′/Q)/Gal(L′
v/Qv) containing 1. Every elelment σ of Gal(L′/Q) may be

written uniquely as a product σ = ζηρ, ζ ∈ Gal(L′/L), η ∈ e, ρ ∈ Gal(L′
v/Qv). We may suppose

that w′
σ = w′

ρw
′
ηw

′
ρ with w′

1 = 1 and w′
ρ ∈ wL′

v/Qv
. Let w′ be w(τ) with respect to L′, and w be w(τ)

with respect to L. Then under the canonical map π : WL′/Q → WL/Q the element w′ maps to w. If

σ ∈ Gal(L/Q) it lifts to a unique element of Gal(L′/Q) of the form ηρ. We suppose that wσ is the

image of w′
ηw

′
ρ. Thus if

w′
ηw

′
ρw

′ = dη,ρ(w′)w′
η′w′

ρ′

with dη,ρ(w′) ∈ WL′/L then cσ(w) = π(dη,ρ(w′)). On the other hand if σ1 = ζηρ lies in Gal(L′/Q)

then

w′
ζdη,ρ(w

′) = cσ1(w
′)w′

ζ .

Consequently, by the very definition of π,

cσ(w) =
∏

σ1→σ

cσ1(w
′).

It follows immediately that b0(τ) is the image of b′0(τ).

If Lv = R then X∗(SL) � Z and the Galois group acts trivially. Suppose we replace wσ by eσwσ

with eσ ∈ CL. Then cσ(w) is replaced by eσe−1
στ . Since

∏
σ

(eσe−1
στ )

σµ =
∏
σ

(eσe−1
στ )

µ = 1,

this has no effect on b0(τ), and when defining b0(τ) we need not suppose that the collection {wσ} is

subject to the constraints (a), (b), and (c). If we want to define b′0(τ), we may still need to be careful

about the choice of the coset representativesw′
σ, σ ∈ Gal(L′/Q). However, since we are only interested

in the image of b′0(τ) in SL, we may again ignore (a), (b), and (c). We choose a set e of representatives

for the cosets Gal(L′/L)\Gal(L′/Q), write σ = ρη, ρ ∈ Gal(L′/L), η ∈ e, and take w′
σ = w′

ρw
′
η. If

σ ∈ Gal(L/Q) is the image of η, we take wσ = π(w′
η). The argument can now proceed as before.

Let b̃(τ) be a lift of b0(τ) to IL ⊗ X∗(SL) = SL(A(L)) and let b(τ) be the projection of b̃(τ) on

SL(Af (L)). The element b(τ) is well defined modulo SL(L) and, as we shall see, this bit of ambiguity

will cause us no difficulty. But we have to fix one choice. The first point to verify is that

dτ1,τ2 = b(τ1)τ1(b(τ2))b(τ1τ2)−1
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lies in SL(L). When verifying this, we may choose the liftings b̃(τ1), b̃(τ2), and b̃(τ1τ2) in any way we

like. We choose liftings c̃σ(w1) and c̃σ(w2) of cσ(w1) and cσ(w2) to IL and take

b̃(τ1) =
∏
σ

c̃σ(w1)σµ, b̃(τ2) =
∏
σ

c̃σ(w2)σµ.

Since cσ(w1w2) = cσ(w1)cστ1(w2), we may take c̃σ(w1w2) to be c̃σ(w1)c̃στ1(w2). Because

τ−1
1 (b̃(τ2)) =

∏
σ

c̃σ(w2)στ
−1
1 µ =

∏
σ

c̃στ1(w2)σµ,

the element dτ1,τ2 will then be 1.

Finally we have to establish that the elements cρ(τ) defined by equation (5.7) lie in SL(L), for

equations (5.4) and (5.5) will then follow immediately. It will suffice to show that for any w ∈ WL/Q

and any ρ ∈ Gal(L/Q)

(5.10)

{∏
σ

cσ(w)σµ
}{∏

σ

ρ(cσ(w))−ρσµ

}

lies in L×
∞ ⊗ X∗(SL). Suppose w = w1w2 and w1 projects to τ1 ∈ Gal(L/Q). Then cσ(w) =

cσ(w1)cστ1(w2) and (5.10) is equal to

{∏
σ

cσ(w1)σµρ(cσ(w1))−ρσµ

}
τ1

{∏
σ

cσ(w2)σµρ(cσ(w2))−ρσµ

}
.

Consequently we need only verify that (5.10) lies in L×∞⊗X∗(SL) forw in CL and forw = wτ . Ifw lies

in CL then cσ(w) = σ(w) and
∏

σ σ(w)
σµ =

∏
σ ρσ(w)

ρσµ. The expression (5.10) is therefore equal to

1. If w = wτ then cσ(w) = aσ,τ and

(5.11)
∏
σ

aσµσ,τρ(aσ,τ )
−ρσµ =

∏
σ

aρσ(τ−1−1)µ
ρ,σ .

However it follows from condition (c) that aρ,σ ≡ aρ,σι(mod L×
∞). Since (1 + ι) · (1− τ−1)µ = 0, the

right side of (5.11) lies in L×
∞ ⊗X∗(SL).

Since b(τ), although defined for τ ∈ Gal(Q̄/Q), depends only on the image of τ in Gal(Lab/Q), the

groups T L and T are now completely defined. The ambiguity in the b(τ) is easily seen to correspond

to the ambiguity in the choice of the section a(τ).

If E ⊆ Q̄ is any finite extension of Q, we let TE be the inverse image of Gal(Q̄/E) in T . If

E ⊆ Lab we may also introduce T L
E . The group T L

L has been introduced by Serre [41], who uses it to
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formulate some ideas of Taniyama. He makes its arithmetic significance quite clear, but his definition

is sufficiently different from that given here that an explanation of the reasons for their equivalence is

in order.

If x is an idèle of L then ψ(x) =
∏

Gal(L/Q) σ(x)
σµ is an element of SL(A(L)). By II.4 of [41]

there is an open subgroup U of the group of idèles IL such that ψ(x) = 1 if x ∈ U ∩ L×. The standard

map of IL onto Gal(Lab/L) restricts to U and if τ = τ(x) is the image of x we may take w = w(τ) to

be the image of x in CL. Then ψ(x) is a lifting of b0(τ) to SL(A(L)). However ψ(x) depends only

on τ , and thus we may take b̃(τ) = ψ(x). Then dτ1,τ2 = 1 and cρ(τ) = 1 if τ, τ1, τ2 lie in the image

Gal(Lab/F ) of U . Here F is the finite extension of L defined by U . The elements cρ(τ) are in fact 1

for all τ ∈ Gal(Lab/L). If we choose a set of representatives e for Gal(Lab/F )\Gal(Lab/L) and set

b̃(τη) = b̃(τ)b̃(η), τ ∈ Gal(Lab/F ), η ∈ e, then, in general, dτ1,τ2 will depend only on the images of

τ1, τ2 in Gal(F/L), and T L
L may be obtained by pulling back an extension

1 → SL → TU → Gal(F/L)→ 1

to Gal(Lab/L). Here TU is the quotient of T L
L by the normal subgroup {a(τ) | τ ∈ Gal(Lab/F )}. It is

the extension TU that Serre defines directly. He denotes it by the symbol Sm.

The map ψ defines a homomorphism of L×/L× ∩U � L×U/L× into SL(L) and to verify that TU
is the group studied by Serre, we have only to verify that it can be imbedded in a commutative diagram

1 → L×U/U → TL/U → IL/L
×U → 1� � �$

1 → SL(Q) → TU (Q) → Gal(F/L)→ 1

The right-hand arrow is x → τ(x)−1. We do not have to pass to the quotient but may define the

homomorphism

(5.12) IL/L
× → T L

L (L)

directly. The central arrow is then obtained by composing with the projection TL
L (L) → TU (L). The

homomorphism (5.12) is

x→
{∏

σ

σ(x)σµ
}
b̃(τ)−1a(τ)−1

if τ is the image of x in Gal(Lab/L). The composition of our splitting Gal(Lab/L) → T L
L (Q$) with

T L
L (Q$) → TU (Q$) is either Serre’s ε$ or its inverse, presumably its inverse, for we are so arranging
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matters that the eigenvalues of the Frobenius elements acting on the cohomology of algebraic varieties

are greater than or equal to 1.

The cocycle ρ → cρ(τ) certainly becomes trivial at every finite place, but is not necessarily trivial

at the infinite place, v. Indeed under the isomorphism

H1(Gal(Lv(Qv),SL(Lv)) � H−1(Gal(Lv/Qv),X∗(SL))

given by the Tate-Nakayama duality it corresponds to the element of the group on the right represented

by (1− τ−1)µ. If, as has been our custom, we denote the image of τ in Gal(L/Q) again by τ we may

suppose that w(τ) = wτ , for the class of {cρ(τ)} depends only on this image. According to the

discussion of formula (5.11)

∏
σ

aρσ(τ−1−1)µ
ρ,σ =

∏
η∈f

(aρ,ηιa−1
ρ,η)

ρη(τ−1−1)µ = eρ(τ)

lies in L×
∞ ⊗ X∗(SL) = SL(L∞). By definition, the classes of {cρ(τ)} and {eρ(τ)} are inverse to

one another in H1(Gal(L/Q),SL(A(L))). Thus all we need do is calculate the projection of eρ(τ) on

SL(Lv) for ρ ∈ Gal(Lv/Qv).

Observe first of all that if we agree to choose coset representatives satisfying (d), then aρ,ηιa−1
ρ,η

= ρ(a−1
η,ι)aρη,ι = aρη,ι. Again if ρη = η1ρ1 then

aρη,ι = aη1ρ1,ι = η1(aρ1,ι)aη1,ρ1ιa
−1
η1,ρ1

= η1(aρ1,ι).

Since aρ1,ι ∈ L×
v , the term on the right has a projection on L×

v different from 1 only if η1 = 1. Then η

too equals 1, and so the projection of eρ(τ) on SL(Lv) is

aρι(τ
−1−1)µ

ρ,ι =
∏

Gal(Lv/Qv)

aρσ(τ−1−1)µ
ρ,σ ,

in conformity with our assertion.

Suppose T is a torus over Q, provided with a coweight µ such that

(5.13) (1 + ι)(τ − 1)µ = (τ − 1)(1 + ι)µ = 0

for all τ ∈ Gal(Q̄/Q). Then there exists a unique homomorphism ψ : S → T such that the composition

of ψ with the canonical coweight of S is µ. We can transport the cocycles ρ → cρ(τ) from S to T ,

obtaining cocycles {cρ(τ, µ)} as well as b(τ, µ) ∈ T (Af (L)). However if T and h : R → T define
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a Shimura variety and µ is the restriction of h to the first factor of R the condition (5.13) will not

necessarily be satisfied. Nonetheless, we may repeat the previous construction and define b(τ, µ) and

{cρ(τ, µ)} for all τ such that (1 + ι)(τ−1 − 1)µ = 0. This generalization is necessary for the treatment

of those Shimura varieties Sh(G,h) for whichG is not equal toG0. It should perhaps be observed that

b(τ, µ) is not insensitive to the ambiguity in the choice of w = w(τ), although {cρ(τ, µ)} is. However,

if Z is the centre of G the ambiguity all lies in Z(Af ) ∩K , and may be ignored.

If E ⊆ C the motives over E whose associated Hodge structure is of CM type are themselves

said to be of CM type. They form a tannakian category CM(E) with a natural fibre functor ωCM(E),

given by rational cohomology. Since one expects that the natural functor CM(Q̄) → CM(C) is an

equivalence, we may as well suppose that E ⊆ Q̄. According to the hopes expressed at the end of

the previous section there should be an equivalence η : CM(Q̄) → REP(S) and an isomorphism

ωRep(S) ◦ η → ωCM(Q̄), which would enable us to identify S with the group GCM(Q̄), defined by the

category CM(Q̄) and the functor ωCM(Q̄). If E ⊆ Q̄, one hopes that in the same way it will be possible

to identify TE with GCM(E).

There are properties which this identification whould have, and it is necessary to describe them

explicitly. First of all, if F ⊆ E the diagram

S −→ TE −→ TF� �� ��
GCM(Q̄) −→ GCM(E) −→ GCM(F )

should be commutative.

The other properties are more complicated to describe. Suppose τ ∈ Gal(Q̄/Q) and τ takes E

to E′. Its inverse then naturally defines a ⊗-functor η(τ) from CM(E′) to CM(E). Let Gτ
CM(E′)

be the group defined by the category CM(E′) and the functor ωCM(E) ◦ η(τ). The dual of η(τ)

is then an isomorphism ϕ(τ) : GCM(E) → Gτ
CM(E′). In terms of representations η(τ) associates

to every representation (ξ′, V (ξ′)) of GCM(E′) a representation (ξ, V (ξ)) of GCM(E). Since ωCM(E′)

and ωCM(E) ◦ η(τ) become isomorphic over Q̄ there is a family of homomorphisms, one for each

ξ′, ψ(ξ′) : V (ξ′)Q̄ → V (ξ)Q̄, compatible with sums and tensor products. If ψ′(ξ) is another possible

family then there is a t ∈ TE′(Q̄), such that ψ′(ξ′) = ψ(ξ′)ξ′(t). Finally since the two functors ωAf

CM(E′)

and ωAf

CM(E) ◦ η(τ) are canonically isomorphic, arising as they do from the :-adic cohomology, there is

a canonical family of isomorphisms ψAf
(ξ′) : V (ξ′)Af

→ V (ξ)Af
.

On the other hand, suppose a(τ) ∈ T (Q̄)maps to τ . Let σ(a(τ)) = cσ(τ)a(τ). We may use a(τ) to

associate to every representation (ξ′, V (ξ′)) of TE′ a representation (ξ, V (ξ)) of TE . The space V (ξ) is
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obtained by twisting V (ξ′) by the cocycle {ξ′(cσ(τ)−1)}. The representation ξ is t→ ξ′(a(τ)ta(τ)−1).

This functor (ξ′, V (ξ′))→ (ξ, V (ξ)) is to be (isomorphic to) that obtained from η(τ) by identifying TE
and GCM(E) and TE′ and GCM(E′). Moreover one possible choice for ψ(ξ′) is to be the isomorphism

ψ0(ξ′) : V (ξ′)Q̄ → V (ξ)Q̄ implicit in the definition of V (ξ). If b(τ)a(τ) is the image of τ under the

canonical splitting Gal(Q̄/Q) → T (Af ), then ψAf
(ξ′) is to be ψ0(ξ′) ◦ ξ′(b(τ))−1.

If τ ∈ Gal(Q̄/E) then E′ = E and η(τ) : CM(E′) → CM(E) is the identity functor. Thus the

functor (ξ′, V (ξ′))→ (ξ, V (ξ)) from Rep(TE′) = Rep(TE) to Rep(TE) must be canonically isomorphic

to the identity. A final property, which seems to be independent of the preceding ones, is that this

isomorphism should be given by ξ′ → ξ and ψ0(ξ′) ◦ ξ′(a(τ)) : V (ξ′) → V (ξ). Observe that a(τ) is

now in TE and these transformations are defined over Q.

I assume that all this is so, just to see where it leads, and especially to see what it suggests about

the groups Gτ,ϕ introduced in the previous section. But there are some lemmas to be verified first. I

conclude the present section by describing a property of the Taniyama group whose significance was

pointed out to me by Casselman. It will be needed to show that the zeta-functions of motives, and

especially abelian varieties, of CM type can be expressed as products of the L-functions associated to

representations of the Weil group.

The point is that there is a natural homomorphism ϕ of the Weil group WQ of Q into T (C) and

thus for any finite extension F of Q a homomorphism ϕF : WF → TF (C). To define it we work at a

finite level, defining WL/Q → T L(C), and afterwards passing to the limit.

Fix for now a set of coset representativeswσ which satisfies (a), (b), and (c). Ifw ∈WL/Q we define

b0(w) =
∏

σ∈Gal(L/Q) cσ(w)
σµ. If τ is the image of w in Gal(Lab/Q) then b0(w) ≡ b0(τ)(mod L×

∞ ⊗
X∗(SL)), and we may lift b0(w) to b(w) in SL(A(L)) in such a way that the projection of b(w) in

SL(Af (L)) is b(τ). However a simple calculation shows that if τ1, τ2 are the images of w1, w2 then

b(w1)τ1(b(w2))b(w1w2)−1 ∈ SL(L). Since its projection onSL(Af (L)) is equal to dτ1,τ2 , it is itself equal

to dτ1,τ2 . If bv(w) is the projection of b(w) in SL(Lν) = SL(C), we may define ϕ by ϕ : w → bv(w)a(τ).

If the coset representatives wσ are changed then ϕ is replaced by ϕ′ = ada ◦ ϕ, a ∈ SL(C), but this is

of no importance.

If GWF
is the group over C defined by the tannakian category of continuous, finite-dimensional,

complex, semisimple representations ofWF thenϕF is the composite of the imbeddingWF → GWF
(C)
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and an algebraic homomorphism ψF : GWF
→ TF . Moreover if the principle of functoriality is valid,

there is a surjection GΠ(F ) → GWF
and we can expect to have a diagram

GΠ(F )
ρF−→ GMot(F )� �

GWF
−→
ψF

TF

whose two composite arrows differ by ads, s ∈ S(C) ⊆ TF (C).

6. Conjugation of Shimura varieties. The principal purpose of this section is to formulate a

conjecture about the conjugation of Shimura varieties, a conjecture whose first justification is that it

is a simple statement which implies what we need for the study of the zeta-functions at archimedean

places and is compatible with all that we know. Some lemmas are necessary before it can be stated,

and we shall see that these lemmas together with the hypothetical properties of the Taniyama group

suggest an answer to the question that arose at the end of the fourth section. This answer in its turn

throws new light on the conjecture, so that we can weave a consistent pattern of hypotheses, and our

task will be ultimately to show that it has some real validity.

We need a construction, which we make in sufficient generality that it applies to all Shimura

varieties and not just those associated to motives. Suppose the pair (G,H) defines a Shimura variety, T

and T̄ are two Cartan subgroups of G defined over Q, and h : R → T,h̄ : R → T̄ both lie in H. Let µ

and µ̄ be the coweights of T and T̄ obtained by restricting h and h̄ to the first factor of R, and choose a

finite Galois extensionLwhich splits T and T̄ . Let τ ∈ Gal(Q̄/Q); then the coweights (1+ ι)(τ−1−1)µ

and (1 + ι)(τ−1 − 1)µ̄ are both central and they are equal. Choose w = w(τ) as before, and set

b0(τ, µ) =
∏
σ

cσ(w)σµ, b0(τ, µ̄) =
∏
σ

cσ(w)σµ̄.

Let b̃(τ, µ) and b̃(τ, µ̄) be liftings to T (A(L)) and T̄ (A(L)) and let B(τ) = B(τ, µ, µ̄) be the projection

of b̃(τ, µ̄)−1b̃(τ, µ) on G(Af (L)). Although we may not be able to define the cocycle {cρ(τ, µ)}, we can

define {cρ(τ, µad)} if µad is the composition of µwith the projection to the adjoint group.

It may be as well to check that B(τ) is indeed independent of the choice of w and of the coset

representatives wσ , provided the usual conditions (a), (b), and (c) are satisfied. If wσ is replaced by

eσwσ then, apart from a factor in L×
∞ ⊗ X∗(T ), b0(τ, µ) is multiplied by

∏
η∈f e

η(1+ι)(τ−1−1)µ
η , and

b0(τ, µ̄) by
∏

η∈f e
η(1+ι)(τ−1−1)µ̄
η . Since these two terms are central and equal by assumption, the

change has no effect on B(τ). If w is replaced by xwx−1 with xσ(x−1) ∈ L×
v for σ ∈ Gal(Lv/Qv),

then b0(τ, µ) is modified by the product of an element in L×
∞⊗X∗(T ) and

∏
η x

η(1+ι)(τ−1−1)µτ . Since
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b0(τ, µ̄) undergoes a similar modification, B(τ) is not affected. One can also show easily that B(τ) is

not changed when L is enlarged; the argument is once again basically the same as that used to treat

b(τ).

B(τ) does depend on the choice of b̃(τ, µ) and b̃(τ, µ̄). These choices made, we will use them

consistently to define cρ(τ, µad), cρ(τ, µ̄ad), and when

(1 + ι)(τ−1 − 1)µ = (1 + ι)(τ−1 − 1)µ̄ = 0,

cρ(τ, µ), cρ(τ, µ̄). Thus cρ(τ, µad) is to be the projection of ρ(b̃(τ, µ)−1)b̃(τ, µ) in Gad(Af (L)). With

these conventions, the ambiguity in B(τ) will cause no harm in the construction to be given next.

Let Gτ,µ and Gτ,µ̄ be the groups obtained from G by twisting with the cocycles {cρ(τ, µad)−1}
and {cρ(τ, µ̄ad)−1}. We are going to verify the following:

First Lemma of Comparison. (i) If cρ = cρ(τ, µad) then

γρ = B(τ)adc−1
ρ (ρ(B(τ)−1))

lies in Gτ,µ(L).

(ii) The cocycle {γρ} in Gτ,µ(L) bounds.

(iii) If (1 + ι)(τ−1 − 1)µ = (1 + ι)(τ−1 − 1)µ̄ = 0 then

γρ = cρ(τ, µ̄)−1cρ(τ, µ).

The third assertion is clear; it is the other two with which we must deal. The element γρ can be

obtained by projecting

(6.1) b̃(τ, µ̄)−1ρ(b̃(τ, µ̄))ρ(b̃(τ, µ)−1)b̃(τ, µ)

on G(Af (L)). This makes it perfectly clear that γρ is not affected if w = w(τ) is replaced by xw(τ)

with x ∈ CL. Thus we may assume that w = wτ , where τ is here also used to denote the image of τ in

Gal(L/Q). Then we have to show that

b̃(τ, µ̄)−1ρ(b̃(τ, µ̄)) ≡ b̃(τ, µ)−1ρ(b̃(τ, µ)) (mod G(L∞)G(L)).

It follows easily from (5.11) that if ãρ,η is a lift of aρ,η to IL, then both sides are congruent to

∏
η

ãρη(1+ι)(1−τ−1)µ
ρ,η =

∏
η

ãρη(1+ι)(1−τ−1)µ̄
ρ,η .
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The desired equality follows.

To prove the second assertion we shall apply Hasse’s principle, but for this we need a group G

whose derived groupGder is simply connected. LetGsc be the simply connected covering ofGder. The

Cartan subgroup T defines Tder and Tsc. We have an imbedding X∗(Tsc) → X∗(T ) and Gder = Gsc if

and only if the quotient is torsion-free. If we can construct a diagram of Gal(L/Q)-modules

0 −→ X∗(Tsc) −→ Q −→ P −→ 0∥∥∥ � �
0 −→ X∗(Tsc) −→ X∗(T ) −→ M −→ 0

in which P is torsion-free and P → M is a surjection whose kernel is a free Gal(L/Q)-module, then

we can use it to define a central extension G′ of G with X∗(T ′) = Q. We will have G′
der = G′

sc = Gsc,

and G′(R) → G(R) will be surjective. To construct the diagram, we choose an exact sequence of

Gal(L/Q)-modules

0 −→ N −→ P −→M −→ 0,

with P torsion-free and N free. Then Q is the set of all (x, ρ) inX∗(T )⊕ P for which x and ρ have the

same image in M .

We lift µ to µ′ = (µ, ν) with ν ∈ P . If µ̄ = adg ◦ µ and g is the image of g′, we set µ̄′ = adg′ ◦ µ′.
If the assertion is valid for µ′, µ̄′, andG′ it is valid for µ, µ̄, andG. Consequently we may suppose that

Gder is simply-connected.

There are two types of ambiguity in B(τ). It can be changed to tB(τ) with t ∈ T̄ (L). Then {γρ}
is replaced by {(tγρadc−1

ρ (ρ(t)−1)}, and its cohomology class is not affected. We can also change B(τ)

to B(τ)t with t ∈ T (L). Then {cρ} is replaced by {c′ρ} with c′ρ = ρ(t−1
ad )cρtad, tad being the image of t

in Gad, and {γρ} is replaced by {γ′ρ}, with

γ′ρ = γρadc−1
ρ (ρ(t−1))t.

If γρ = δadc−1
ρ (ρ(δ−1)) then

γ′ρ = (δt)ad−1c′ρ(ρ(δt)
−1).

Consequently the ambiguity in B(τ) has no effect on the assertion (ii).

Rather than prove (ii) directly for a given choice of the pairµ, µ̄, we want to prove it for a succession

of pairs. For this one should first check that the validity of (ii) defines an equivalence relation. If µ and

µ̄ are interchanged then {γρ} is replaced by {γ−1
ρ }, and if γρ = δadc−1

ρ (ρ(δ−1)) then

γ−1
ρ = δ−1adc̄−1

ρ (ρ(δ)).
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To show the transitivity, we introduce a new notation, denoting γρ by γρ(µ̄, µ), and cρ by cρ(µ). Suppose

γρ(µ2, µ3) = tadc−1
ρ (µ3)(ρ(t−1)),

γρ(µ1, µ2) = sadc−1
ρ (µ2)(ρ(s−1)).

Observing that

γρ(µ2, µ3)adc−1
ρ (µ3)(ρ(s−1))γρ(µ2, µ3)−1 = adc−1

ρ (µ2)(ρ(s−1))

and that γρ(µ1, µ3) = γρ(µ1, µ2)γρ(µ2, µ3), one deduces with little effort that

γρ(µ1, µ3) = stadcρ(µ3)(ρ(st)−1).

Transitivity established, we return to the original notation. If µ̄ is conjugate to µ under G(Q), say

µ̄ = adx ◦ µ then

γρ = xadc−1
ρ (x−1) = xadc−1

ρ (ρ(x−1)),

and certainly bounds. In general µ̄ and µ are not conjugate under G(Q), but they are conjugate under

G(R). Since G(Q) is dense in G(R) we may take advantage of the transitivity and assume that they

are conjugate under Gder(R).

It is now that the assumption that Gder is simply connected intervenes. If we are careful in our

choice of b̃(τ, µ) and b̃(τ, µ̄), defining them by liftings of cσ(w) to IL, then B(τ) and the γρ will lie

in Gτ,µ
der . Moreover the cocycle {γρ} in Gτ,µ

der(L) certainly bounds at every finite place. Since we are

applying Hasse’s principle, we need only verify that it bounds at infinity as well.

One begins with a calculation similar to the one made while studying the cocycle {cρ(τ)}. If

ρ ∈ Gal(L/Q), set

eρ(τ, µ) =
∏
η∈f

aρη(τ−1−1)µ
ρη,ι

and define eρ(τ, µ̄) in a similar fashion. The projection of {γρ} on Gτ,µ(L∞) is cohomologous to

eρ(τ, µ̄)eρ(τ, µ)−1. If ρ ∈ Gal(Lv/Qv) the projection of eρ(τ, µ) on Gτ,µ(Lv) is

fρ(τ, µ) =
∏

σ∈Gal(Lv/Qv)

aρσ(τ−1−1)µ
ρ,σ .

Thus all we need do is show that fρ(τ, µ̄)fρ(τ, µ)−1 bounds inGτ,µ(Lv). Recall that the cocycle defining

Gτ,µ(Lv) is

hρ =
∏

σ∈Gal(Lv/Qv)

aρσ(τ−1−1)µad .
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For brevity, we write {
∏

σ a
ρσν
ρ,σ } = {αρ(ν)}. If x ∈ G(R) we write x(µ) = adx ◦ µ. If x(µ̄) = µ then

xfρ(τ, µ̄)fρ(τ, µ)−1adhρ(ρ(x−1)) = αρ((xτ−1x−1 − τ−1)µ),

because ρ(x) = x and

fρ(τ, µ)−1adhρ(x−1) = x−1fρ(τ, µ)−1.

If w lies in the normalizer of Tder in Gder(Lv) then

(6.2) wadhρ(ρ(w−1)) = wρ(w−1)αρ((w − 1)(τ−1 − 1)µ).

However {wρ(w−1)} is a cohomology class in Tder(Lv) or T τ,µ
der (Lv), the two groups being equal,

and it is shown in [45] that it is equivalent to {αρ((w − 1)µ)}. Thus the class of (6.2) in Gτ,µ
der(Lv) is

{αρ((w − 1)τ−1µ)}. Since we may take w such that its action on the weights of T is the same as that

of xτ−1x−1τ , the verification is complete.

There is another fact that we should verify while this proof is fresh in our minds. Suppose there

is an ω in the Weyl group such that

(6.3) ωµ = τ−1µ.

Then (1 + ι)(τ−1 − 1)µ = 0 and {c−1
ρ (τ)} = {c−1

ρ (τ, µ)} is defined. It bounds in G(L). Once again it

is enough to verify this when Gder is simply connected, although this time the modifications made to

arrive at a simply-connected derived group would be different. It is no longer important that P →M

be surjective, or that its kernel be free, but there must be a ν ∈ P which maps to µ and is fixed by

Gal(Q̄/E).

The set of all τ which satisfy (6.3) for at least one ω form a group. Let E = E(G,h) = E(G,H)

be its fixed field. Then E ⊆ L. In order to apply Hasse’s principle we have to arrange that {cρ(τ)}

lies in Gder(L) and that it obviously bounds in Gder(Af (L)). Since cρ(τ) only depends on the image

of τ in Gal(L/Q), we may calculate it when w = wτ . If S is a set of coset representatives for

Gal(L/Q)/Gal(L/E), then

b0(τ) =
∏
ν∈S

∏
σ∈Gal(L/E)

aνσµνσ,τ .

We write aνσ,τ = ν(aσ,τ )aν,στa−1
ν,σ and νσµ = νµ+ ν(σ − 1)µ. Now for σ ∈ Gal(L/E), ν(σ − 1)µ is

a weight of the derived group and
∏

ν

∏
σ a

ν(σ−1)µ
νσ,τ may be lifted to Tder(A(L)). On the other hand
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∏
ν

∏
σ a

νµ
ν,στa

−νµ
ν,σ = 1. If a =

∏
σ aσ,τ then a lies in CE and lifts to a′ in IE . Moreover

∏
ν ν(a)

νµ lifts

to
∏

ν ν(a
′)νµ which lies in T (A). If āνσ,τ is a lifting of aνσ,τ to IL then we so choose cρ(τ) that

(6.4) cρ(τ) ≡
{∏

ν,σ

ρ(āνσ,τ )−ρν(σ−1)ν

}{∏
ν,σ

āν(σ−1)µ
νσ,τ

}

modulo T (L∞).

It remains to verify that the {c−1
ρ (τ)} so defined bounds at the infinite place. The projection of the

right side of (6.4) on CL ⊗X∗(Tder) is∏
ν,σ

aρνσ(τ−1−1)µ
ρ,νσ =

∏
σ∈Gal(L/Q)

aρσ(τ−1−1)µ
ρ,σ .

Thus, restricting {c−1
ρ (τ)} to Gal(L/Qv) and projecting on Tder(Lv), we obtain a class cohomologous

to {αρ((τ−1 − 1)µ)} = {αρ((ω − 1)µ)}. We have observed already that it is shown in [45] that the

right side bounds in Gder(Lv).

Although there is one more consequence to be derived from (6.3), there are some things that must

first be said about the general (T, h), or (T, µ).

We drop the assumption (6.3) for a while, and return to it later. We have associated to the pair

(T, µ) and τ a twisted form Gτ,µ of G. The twisting of T in G is trivial, and Tτ = T is a Cartan

subgroup of Gτ,µ. Let µτ be τ−1µ. There is a unique homomorphism hτ : R → T τ whose restriction

on the first factor is µτ and which is defined over R.

The pair (Gτ,µ, hτ ) defines a Shimura variety.

The roots {γ} of T in G are the same as the roots of Tτ in Gτ,µ. However the classification into

compact and noncompact differs for the two pairs. The root γ of T in G is compact or noncompact

according as (−1)〈τ,µ〉 is 1 or−1. In order for (Gτ,µ, hτ ) to define a Shmura variety, γ must be compact

or noncompact as a root of Tτ according as (−1)〈γ,τ
−1µ〉 is 1 or −1. However the ideas used in the

proof of Lemma A.8 of [34] show that the type of γ is changed on passing from T ,G to Tτ , Gτ,µ if and

only if (−1)〈γ,τ
−1µ−µ〉 = −1.

We are now almost ready to formulate a conjecture about the conjugation of Shimura varieties.

After discussing the conjecture and its consequences, we shall show how it can be heuristically justified

in terms of the Taniyama group and motives.

Recall that ShK(C) = G(Q)\H × G(Af )/K . Thus if g ∈ G(Af ) and K1 = g−1Kg, then right

multiplication by g defines a morphism

F(g) : ShK(C) −→ ShK1(C).
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It is algebraic and is called a Hecke correspondence. If τ is an automorphism of C, we set ShτK(G,h) =

ShτK = ShK ⊗τ−1 C, the Shimura varieties being at the moment only defined over C. Then Fτ (g) :

ShτK → ShτK1
.

If G = T is a torus and K = U then ShU is 0-dimensional. Let τ also denote the element of

Gal(Q̄/Q) defined by τ . If we set Uτ = U then

ShU (C) = T (Af )/U = T τ (Af )/Uτ = ShUτ .

This gives us an isomorphism ShU = ShU (T, h) → ShUτ = ShUτ (T τ , hτ ). In addition there is

the natural map τ from complex points of ShτU (T, h) to complex points of ShU (T, h). Define ϕτ =

ϕτ (U, T, h) by the commutativity of the diagram

ShU (T, h)

τ↗
ShτU (T, h)

�
ϕτ↘

ShUτ (T τ , hτ )

In generalGτ,µ andG are different. ButGτ,µ is defined by the cocycle {c−1
ρ (τ, µad)} and inGad(Af (L))

c−1
ρ (τ, µad) = b(τ, µad)−1ρ(b(τ, µad)).

Thus

g −→ gτ = adb(τ, µad)−1(g)

defines an isomorphism of G(Af ) with Gτ,µ(Af ).

Conjecture. There is a family of biregular maps ϕτ = ϕτ (K,G, h),K ⊆ G(Af ) defined over

C, taking ShτK(G,h) to ShKτ (Gτ,µ, hτ ), and rendering the following diagrams commutative:

(a)

ShU (T, h) ⊂−−−→ ShK(G,h)

τ

�
�τ

ShτU (T, h) ⊂−−−→ ShτK(G,h)

ϕτ

�
�ϕτ

ShUτ (T τ , hτ ) ⊂−−−→ ShKτ (Gτ,µhτ )
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Here U = T (Af ) ∩K and the ϕτ in the left column is ϕτ (U, T, h).

(b)

ShτK(G,H)
Fτ (g)−→ ShτK1

(G,h)

ϕτ

�
�ϕτ

ShKτ (Gτ,µ, hτ ) −→
F(gτ )

ShKτ
1
(Gτ,µ, hτ )

The conjecture in this form refers to a specific T and a specific h factoring through T . If we choose

another pair (T̄ , h̄) we obtain another group Gτ,µ̄ and another collection {ϕ̄τ = ϕ̄τ (K;G, h̄)}. The

conjecture is inadequate as it stands, and must be supplemented by a statement relating ϕτ and ϕ̄τ .

Observe that there can be at most one family {ϕτ} satisfying the conditions (a) and (b).

We have already associated to the two pairs (T, h) and (T̄ , h̄) a cocycle {γρ} which bounds in

Gτ,µ(L). Let γρ = uadc−1
ρ (ρ(u−1)). Then g → ugu−1 defines an isomorphism of Gτ,µ(Q) with

Gτ,µ̄(Q) or of Gτ,µ(Af ) with Gτ,µ̄(Af ). Set uKτ = uKτu−1.

Second Lemma of Comparison. The homomorphismadu◦hτ is conjugate under Gτ,µ̄(R)

to h̄τ .

If this statement is true when u is replaced by a v in G(Lv) = G(C) which also trivializes {γρ}
restricted to Gal(Lv/Qv) then it is true for u. An examination of the proof of the second property of

{γρ} shows that we can take v to lie in x−1wT (Lv), x andw being as in that proof. Sincex−1w(τ−1µ) =

τ−1µ̄, we have adν ◦ hτ = h̄τ .

We infer that adu carries H to H̄τ and hence defines a bijection

Gτ,µ(Q)\Hτ ×Gτ,µ(Af )/Kτ −→ Gτ,µ̄(Q)\H̄τ ×Gτ,µ̄(Af )/uKτ

and an isomorphism

ψ : ShKτ (Gτ,µ, hτ ) −→ ShµKτ (Gτ,µ̄, h̄τ ).

Since u and B(τ) both trivialize {γρ} in Gτ,µ(Af (L)) there is a y in Gτ,µ(Af ) with u = B(τ)y. Let ϕ

be the composite ψ ◦ F(y).

Supplement to the conjecture. The diagrams

....................

................................................................................................................................................
....................

..................................................................................................................................................................
..

ShτK(G,h)

ShKτ (Gτ,µ, hτ ) ShKτ (Gτ,µ̄, h̄τ )

ϕτ ϕ̄τ

ϕ
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are commutative.

The conjecture as it stands certainly implies that the conjugate of a Shimura variety is again a

Shimura variety. Together with its supplement, it implies the usual form of Shimura’s conjecture [10].

To verify this one applies the Weil criterion [49] for descent of the field of definition. For this we

need families of isomorphisms fρ : ShρK(G,h) −→ ShK(G,h) defined for automorphisms ρ of C over

E(G,h) and satisfying fσρ = fρf
ρ
σ .

Choose a Cartan subgroup T and anhwhich factors through it. We know that when τ fixesE(G,h)

the cocycle {c−1
ρ (τ, µ)} is defined and bounds in G(L). Let c−1

ρ (τ, µ) = νρ(ν−1). Then g → νgν−1 is

an isomorphism of G(Q) with Gτ,µ(Q). Methods which we have already used show easily that

The composite adν ◦ h is conjugate under Gτ,µ(R) to hτ .

Consequently ad ν defines an isomorphism H → Hτ and then, as before, we obtain from

G(Q)\H×G(Af )/K −→ Gτ,µ(Q)\Hτ ×Gτ,µ(Af )/νK

an isomorphism

SK(G,h) −→ SνK
(Gτ,µ, hτ ).

On the other hand zν = b(τ, µ)−1 with z ∈ Gτ,µ(Af ). We define fτ by the commutativity of

ShτK(G,h)
fτ−→ SK(G,h)

ϕτ ↓ ↓
ShKτ (Gτ,µhτ ) −→

F(z)
ShνK

(Gτ,µ, hτ )

I omit the calculations, lengthy but routine, by which it is deduced from the conjecture and its supple-

ment that fτ does not depend on the choice of T and h and that the cocycle condition fσρ = fρf
ρ
σ is

satisfied.

Up to now the SK have been taken as varieties over C, but by the criterion for descent we may

now define them over E(G,h) in such a way that the fτ are simply the identity maps. It has to be

verified that the models thus obtained are canonical, but the construction is clearly such that only the

case thatG is a torus T need by considered. Let a be the transfer ofw = wτ to CE and a′ a lifting of a to

IE . The proof that in this case cρ(τ, µ) is trivial shows in fact that we may take it to be 1 and b = b(τ, µ)

to be
∏

Gal(L/Q)/Gal(L/E) ν(a
′)νµ. We take ν to be 1 and z to be b−1 = b(τ, µ)−1. The composition

ShU (T, h)
τ−1

−→ShU (T, h)
F(b)−→ ShU (T, h)
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is then the identity for all τ fixing E(T, h), and this is just the condition that Sh(T, h) be the canonical

model.

Suppose E(G,h) ⊆ R. If we take the canonical model for ShK then the complex conjugation

defines an involution θ of the complex manifold ShK(C). It is necessary to have a concrete description

of this involution in terms of the representation

ShK(C) = G(Q)\H×G(Af )/K,

and one purpose of the conjecture is to provide it.

Choose some special point (T, h). If E(G,h) ⊆ R then we may define b(ι, µ) and {cρ(ι, µ)}.

However the condition (c) on the coset representativeswσ used to define b(ι, µ) implies that b(ι, µ) = 1.

We may also take cρ(ι, µ) to be 1, and then ν may be taken to be 1 as well. It follows that h and hι are

conjugate in G(R). SinceKhι = Kh, η : adg ◦ hι → adg ◦ h is a well-defined map of H to itself.

Consequence of the conjecture. The involution θ may be realized concretely as the mapping

(h, g)→ (η(h), g) of G(Q)\H×G(Af )/K to itself.

Since we are comparing two continuous mappings which commute with the F(g), g ∈ G(Af ), it

is enough to see that they coincide on the point in SU (T ι, hι) represented by (hι, 1). Since fι is the

identity and ν = z = 1, ϕι takes this point to the point in ShKι(Gι,µ, hι) = ShK(G,h) represented

again by (hι, 1). It follows immediately from condition (a) of the conjecture that ι applied to the point

represented by (hι, 1) is (h, 1).

For each T and µ let ν(µ) be the fibre functor fromREP(G) toREP(Gτ,µ) which takes (ξ′, V (ξ′)),

to (ξ, V (ξ)) with ξ = ξ′, and with V (ξ) being the space obtained from V (ξ′) by changing the Galois

action to σ : x→ ξ′(cσ(τ, µ)−1)σ(x). If (T̄ , h̄) is another special point, and if ν(µ, µ̄) is defined by the

diagram
REP(Gτ,µ)

↖ν(µ)�ν(µ,µ̄) REP(G)

REP(Gτ,µ̄)
↙ν(µ̄)

then, according to the first lemma of comparison, the two fibre functors ωRep(Gτ,µ) and ωRep(Gτ,µ̄) ◦

ν(µ, µ̄) are isomorphic.
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On the other hand, we associated, at the end of the fourth section, to each pair (ϕ′, g) a groupGτ,ϕ

and a pair (ϕ′, g′). The groups G and Gτ,ϕ are associated to the same tannakian category, and there is

thus an equivalence of categories ν(ϕ) : REP(G)→ REP(Gτ,ϕ), determined up to isomorphism. If ϕ

factors through the Serre group, then it can be factored through a Cartan subgroup T̄ ofG and defines

a coweight µ̄ of T . The hypothetical properties of the Taniyama group imply that Gτ,ϕ may be taken

to be Gτ,µ̄ with ν(ϕ) being ν(µ̄). Thus we have a diagram

REP(Gτ,µ)

↖ν(µ)�ν(µ,ϕ) REP(G)

REP(Gτ,ϕ)
↙ν(ϕ̄)

which is commutative up to isomorphism of functors. Moreover the two fibre functors ωRep(Gτ,µ) ◦
ν(µ,ϕ) are isomorphic. If we choose an isomorphism between them, we obtain [40, II.3.3] an isomor-

phism over Q, Gτ,ϕ −→ Gτ,µ. Composing withϕ′ we obtain a homomorphismϕ′′ : GMot(C) −→ Gτ,µ.

Since there are so many special points, it is not unreasonable to hope that ν(µ,ϕ) exists for all ϕ, and

that ωRep(Gτ,µ) and ωRep(Gτ,ϕ) ◦ ν(µ,ϕ) are always isomorphic.

The second lemma of comparison in conjunction with the hypothetical properties of the Taniyama

group implies that the composition of ϕ′′ with the canonical homomorphism R → GMot(C) lies in Hτ

with ϕ factors through the Serre group, and once again we may surmise or hope that this will be so in

general.

If ϕτ is the biregular map appearing in the conjecture then the composition ϕτ ◦ τ−1 defines a

map from the set of complex points on ShK(G,h) to the set of complex points on ShτK(Gτ,µ, hτ ). The

idea is that ϕτ ◦ τ−1 will take (ϕ, g) to a pair (ϕ′′, g′′), by a process which can be defined within the

moduli problem. We have just seen how to obtain ϕ′′, at least at the hypothetical level at which we are

working.

To obtain g′′ we observe that we have two homomorphisms

(6.5) ω
Af

Rep(Gτ,ϕ) ◦ ν(µ,ϕ) −→ ω
Af

Rep(Gτ,µ).

One is obtained from the chosen isomorphism over Q by extending scalars to Af . The other is obtained

by a lengthy composition. The g from which we start provides an isomorphism ω
Af

Mot(C)
◦η → ω

Af

Rep(G).
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The canonical isomorphism ω
Af

Mot(C)
◦ η(τ) → ω

Af

Mot(C)
can be composed with η. Finally the definitions

provide an isomorphism from ωRep(Gτ,ϕ) ◦ ν(ϕ) to ωAf

Mot(C)
◦ η(τ) ◦ η. Putting these all together, we

obtain an isomorphism

(6.6) ω
Af

Rep(Gτ,ϕ) ◦ ν(ϕ) −→ ω
Af

Rep(G).

However we also have an isomorphism

(6.7) ω
Af

Rep(G) −→ ω
Af

Rep(Gτ,µ) ◦ ν(µ).

It is given by the isomorpphism x→ ξ′(b(τ, µ)−1)x of V (ξ′) with V (ξ). Composing (6.6) and (6.7) we

obtain a second isomorphism between the two fibre functors figuring in (6.5). According to general

principles, it can be obtained by composing the first with an element (g′′)−1 in Gτ,µ(Af ) [40, §II].

If one can establish, in some way or another, that the map ψτ : (ϕ, g)→ (ϕ′′, g′′) is really defined,

then to prove the conjecture and its supplement one will only need to verify that the composite ψτ ◦ τ
is complex analytic. However our purpose here has been to see how the wheels mesh, not to find the

mainspring.

7. Continuous cohomology. If G = G0 then, according to the principles of the fourth section,

we should be able to attach to each point of ShK(C) an equivalence class of pairs (ϕ, g). Here ϕ is a

homomorphism from GMot(C) to G defined over Q and if η is the associated θ-functor REP(G) →
MOT (C), then g defines an isomorphism

ω
Af

Mot(C)
◦ η → ω

Af

Rep(G).

In general we have mappings ShK(G,h) → ShK0(G0, h0), and by pulling back we can associate to

each point of ShK(C) a pair (ϕ, g) where g is again in G(Af ), but ϕ now takes GMot(C) to G0.

If (ξ, V (ξ)) is a representation of G0 over Q or, what is the same, a representation of G factoring

through G0, then to each point s of ShK(C) we may associate the motive M(s, ξ) defined by ξ ◦ φ,

together with the isomorphism

ω
Af

Mot(C)
(M(s, ξ)) � V (ξ)Af

defined by g. The variety ShK(G,h) should be defined over E = E(G,h) and so should this family

of motives. Suppose now that the variety ShK(G,h) is proper. In the best of all possible worlds,

one might be able to form the cohomology groups M′, 0 � i � 2 dimShK , of the family M(·, ξ),
which would again be motives, now over E, and thus correspond to representations σi of GMot(E).
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If the formalism of the second section were established, one could compose σi with ρF to obtain

representations ρi = σi(GΠ(E)). Then the basic problem would simply be to describe the image

ρi(GΠ(E)).

But we do not have all this formalism, and one of the principal reasons for studying Shimura

varieties is the hope that by grappling with the specific arithmetic problems they pose we will obtain

an insight that will help us with its construction. Informed by the general principles and hypotheses

we are attempting to establish, we can try to formulate questions that are, at least in part, tractable and

which if answered will confirm or, if the answer is other than expected, perhaps refute these principles.

In the present context we can first observe that even if the Mi remained undefined, the zeta-

function Z(z,M i) can be defined directly in terms of the data at our disposal. It is a product over the

places of E,
∏

v Zv(z,M i). At a nonarchimedean place it can be defined by the :-adic representation

of the Galois group on the ith cohomology group of the :-adic sheaf Fξ(Q$) associated to ξ, as in the

papers [30] and [34]. Since our principal concern now is with the factors for the archimedean places,

we need not enter into details.

The fieldE is contained in C, and the archimedean places are obtained by applying automorphisms

of C, or of Q̄, to E. We first define the factor Zv(z,M i) for the place v given by E ⊆ C. We have seen

that we can associate to ξ a locally constant sheaf Fξ(Q) over ShK(C). Moreover, we have an analytic

family of polarized Hodge structures on Fξ(C) = Fξ(Q) ⊗ C. By a construction of Deligne [12], [50]

this defines a Hodge structure on the cohomology groups Hi = Hi(ShK(C), Fξ(C)).

In accordance with the ideas of Serre [42] the factor Zv(z,M i) will be defined as L(s, ρi) where ρi

is a representation of the Weil groupWC/Ev
onHi. The Hodge structure onHi defines a representation

of R(R). Since C× = R(R), this can be used to define ρi on C× ⊆ WC/Ev
. If Ev is equal to C, this

defines ρi completely. If Ev = R then to define ρi completely we also have to define ρi(w), if w is the

element of the Weil group which projects to ι and has square −1.

Since ShK is defined overE, ι also defines an involution on ShK(C) which we denoted by θ. What

we need is a map of order two

ψ : θ∗F −→ F, F = Fξ(C),

such that on each fibre

θ∗F p,q
s = F p,q

θ(s) −→ F q,p
s .

The associated map ι∗ on cohomology takes Hp,q to Hq,p and we set ρi(w) equal to (−1)pι∗.
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To define ψ we have to assume that the consequence of the conjecture which was described in the

previous section is valid. It can be proved directly in several cases. Then θ can be obtained by taking

the map (h, g) → (η(h), g) and passing to the quotient. Given (h, g), the fibres at the image of (h, g)

and (η(h), g) may both be identified with V (ξ)C and ψ is simply the identity map.

If we replace the imbeddingE ⊆ C by τ−1 : E → C, τ being an automorphism, then the complex

manifold ShK(C) is replaced by ShτK(C), which we may identify by means of ϕτ with ShKτ (C),

the manifold associated to ShKτ (Gτ,µ, hτ ). Thus the factor of the zeta-function defined by the place

associated to τ−1 : E = E(G,h) → C can be calculated by replacing G by Gτ,µ, h by hτ , and E by

τ−1(E) = E(Gτ,µ, h)with the place defined by its inclusion in C. The space V (ξ) has also to be twisted

by the cocycle {ξ(cσ(τ, µ)−1)}.

The function Z(z,M i) defined, the immediate problem is to show that it can be expressed as a

product of L-functions associated to automorphic representations

(7.1) Z(z,M i) =
∏
j

L(z − aj , πj , rj).

Here aj ∈ C is a translation, πj is an automorphic representation of some group Hj , and rj is a

representation of the L-group LHj . The first step is to decide which Hj , which πj , and which rj

intervene in the product.

The first step is to use the theory of continuous cohomology to compute the cohomology groups of

the sheaves Fξ(C) together with their Hodge structure, and thus to compute Zv(z,M i), v being again

defined byE ⊆ C. Using this together with an analysis of theL-packets of automorphic representations

of G [44], one searches for an identity (7.1) which is at least valid when both sides are replaced by

their factors at v. An example is discussed in detail in [34]. The identity found, it must be verified

for the local factors at the other places v′. If v′ is an archimedean place, then the theory of continuous

cohomology will allow us to compute Zv′(z,M i) in terms of the automorphic representations of a

Gτ,µ, a group which differs from G by an inner twisting. To make the comparison it will be necessary

to have established the principle of functoriality for the pair G and Gτ,µ, and to have understood in

detail how it manifests itself. This is bound up with the study of L-packets and is primarily an analytic

problem, for we expect that the trace formula will give us a good purchase on it [23].

At the finite places the identity (7.1) is difficult to treat as it stands, and for reasons familiar from

topology one replaces the left side by

(7.2) Z(z) =
∏
i

Z(z,M i)(−1)i
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modifying the right side accordingly. The right side is then analyzed by the trace formula, at least if

there is no ramification or, at worst, a mild sort [8], [14], [30]. I do not see at the moment any general

way of dealing with a truly nonabelian situation, although a rather curious method has been discovered

by Deligne for treating the group GL(2) [13].

If there is no ramification, the factor of (7.2) at a finite place can be analyzed by the fixed point

formulae of :-adic cohomology. Apart from combinatorial difficulties [28] the critical factor is to have a

reasonably explicit description of the set of geometric points on ShK(G,h) in κ̄p, the algebraic closure

of the residue field at a prime p of E, together with the action of the Frobenius on it [32]. This is an

idea first applied by Ihara [20], who has since intensively studied the structure of this set for Shimura

curves [21], [22].

Not much has been done when there is ramification. The first thing is to analyze in reasonably

simple cases the manner in which the variety reduces badly. Some interesting discoveries have been

made for curves [8], [14], [15], but higher dimensional varieties behave in a more complicated manner.

However tools are available for studying their reduction, and it is time to begin.

None of these steps will be easy to carry out. The study of L-packets is in an embryonic stage, and

even the combinatorial problems will demand considerable ingenuity in their solution [27]. There is

still a great deal to be learned from the study of specific examples.

The theory of continuous cohomology is itself in its infancy, and my purpose in this section is to

draw attention to some problems which arise in the study of Shimura varieties and which the mature

theory should resolve.

I begin by introducing a representation r of the L-groupLGwhich will play a fundamental role in

the discussion. The group LG is a semidirect product LG◦× Gal(Q̄/Q). If T is a Cartan subgroup ofG

over Q then there is an isomorphism of X∗(T ), the lattice of coweights of T , with X∗(LT ◦), the lattice

of weights of LT ◦, defined up to an element of the Weyl group. In particular if (T, h) is a special point

then µ defines an orbit Θ in X∗(LT ◦), and Θ is independent of (T, h). Let r◦ be the representation of
LG◦ whose set of extreme weights is Θ. The group Gal(Q̄/Q) acts on the weights of LT ◦ and preserves

the set of dominant weights. The group Gal(Q̄/E) fixes the set Θ. Thus Gal(Q̄/E) fixes the dominant

element µ∨ in Θ, and we may extend r◦ to LG◦× Gal(Q̄/E) in such a way that Gal(Q̄/E) acts trivially

on the weight space of µ∨. The extended representation will also be called r◦, and we define r to be

the induced representation

r = Ind(LG,LG◦ × Gal(Q̄/E), r◦).
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Let d be the dimension of ShK(G,h). One expects that the function (7.2) will be equal to a product

of functions

(7.3) L(z − d/2, π, ρ).

Here π is an automorphic representation of one of the groups H attached to G in [33]. There is, in

general, an imbedding ϕ : LH ↪→ LG and ρ is a subrepresentation of r ◦ ϕ.

If w is any place of Q, let rw be the restriction of r to the L-group LGw, which equals LG◦ ×

Gal(Q̄w/Qw). Implicit in this notation is an imbedding Q̄ ⊆ Q̄w. Then the double cosets in

Gal(Q̄/E)\Gal(Q̄/Q)/Gal(Q̄w/Qw) parametrize the places of E dividing w, and rw = ⊕v|wrv , with

rv = Ind(LGw,
LG◦ × Gal(Q̄w/Ev), r◦v)

and r◦v(τ) = r◦(σvτσ−1
v ) if σv is some element in the coset defining v. The representation ρ will also

be a direct sum ρ = ⊕v|wρv , and the function (7.3) will be a product
∏

w

∏
v|w L(z − d/2, πw, ρv). The

factor corresponding to the place v is L(z − d/2, πw, ρv).

Since we shall only be interested in the place v given by E ⊆ C, we shall write r and ρ instead of

rv . Moreover we shall write an automorphic representation of G(A) (or ofH(A)) as π ⊗ πf , π being a

representation of G(R) and πf of G(Af ).

Any irreducible representation π of G(R) lies in some L-packet Πϕ where ϕ is a homomorphism

fromWC/R to LG. If α is the character ofWC/R obtained by composing WC/R → R with the absolute

value, let ψ1(π) = α−d/2 ⊗ (r ◦ ϕ). Then L(s− d/2, π, r) = L(s, ψ1(π)).

On the other hand, suppose π ⊗ πf is an automorphic representation of G(A). Let it act on the

subspace U ⊗ Uf of the space of automorphic forms. If h ∈ H then, according to the principles of

continuous cohomology [4], its contribution to the cohomology of ShK(C) with values in Fξ(C) in

dimension i is

(7.4) HomKh
(Λig/k⊗ Ṽ , U) ⊗ UK

f .

Here k is the Lie algebra ofKh and Ṽ the dual of V (ξ). The space UK
f is the space of vectors in Uf fixed

by K .

The action of z ∈ C× = R(R) defining the Hodge structure sends ϕ⊗ u to ϕ′ ⊗ u with

ϕ′(X ⊗ ν̃) = ϕ(η(z)X ⊗ ξ̃(h(z−1))ν̃).
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HereX → η(z)X is the action which multiplies the exterior product of p holomorphic and q antiholo-

morphic vectors by z−pz̄−q. Thus η(z) = ad h(z−1) ◦ η(z̄) and

ϕ′(X ⊗ ν̃) = π(h(z−1))ϕ(η(z̄)X ⊗ ν̃).

If E ⊆ R we may extend this action of C× to an action of WC/R =WC/Ev
. Let n ∈ G(R) be such

that ad n ◦ h = hι. Then the element of w which projects to ι and has square −1 sends ϕ⊗ u to ϕ′ ⊗ u
with

ϕ′(X ⊗ ν̃) = π(n)ϕ(ad n−1(X)⊗ ξ̃(n−1)ν̃).

In either case the representation of WC/Ev
on (7.4) factors as ψi(π) ⊗ 1, where ψi(π) acts on

HomKh
(ΛiG/k⊗ Ṽ , U). Let ψ2(π) be the element in the representation ring of WC/R defined by

ψ2(π) = ⊕(−1)i Ind (WC/R,WC/Ev
, ψi(π)).

Letm(πf ,K) be the dimension of UK
f . If for all π we had

(7.5) ψ2(π) = m(π)ψ1(π)

we could expect a relation

(7.6) Z(z) =
∏
π

L(z − d/2, π, r)m(π∞)m(πf ,K).

Here, as a single exception, we have taken π to be a representation of G(A), its component at infinity

being denoted π∞, and r to be the representation of LG. However (7.5) is not always valid, and it is

the true form of the relation between ψ1(π) and ψ2(π) that we must discover, for it is the clue to the

correct expression of (7.2) as a product of L-functions associated to automorphic representations.

Let Π(ξ) = {π1, · · · , πr} be the set of discrete series representations with the same central and

infinitesimal characters as ξ̃. Then Π(ξ) = Π is an L-packet Πϕ and the representations ψ1(πi) are all

equal. We denote them by ψ1(Π). The continuous cohomology of the representations πi is completely

understood [4], and it is a simple exercise to prove the following lemma.
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Lemma ⊕r
j=1ψ2(πj) = (−1)dψ1(Π).

Thus, in this case, the relation (7.5) fails when the L-packet has more than one element. In order

to correct (7.6) one has to replace r by a subrepresentation. However r is in general irreducible as

a representation of LG, and so we have to introduce the groups LH of [33], and begin the study of

L-indistinguishability.

If we acceptL-indistinguishability, but expect no other difficulties with the correction of (7.6), then

we have to be prepared to prove that every irreducible component of ψ2(π) is a component of ψ1(π).

But we will again be deceived. There is another difficulty.

It appears already in the simplest of the examples considered by Casselman [6] and Milne [36],

although they had no occasion to draw attention to it. SupposeG is the group associated to a quaternion

algebra over Q which is split at infinity but not at p. Let πf = πp⊗ πp, and suppose π⊗ πf is trivial on

the centre, πp is one-dimensional and trivial on the maximal compact subgroup Kp ofG(Qp), and π is

either one-dimensional or the first element of the discrete series. ξ is taken to be trivial. If K = KpKp

then L(s− 1
2 , π⊗ πf , r) should appear in the zeta-function Z(s,ShK) with the exponent ±m(πp,Kp).

Here m(πp,Kp) is the multiplicity with which the trivial representation of Kp occurs in πpf , and the

sign is positive if π is one-dimensional and negative if it is the first element of the discrete series. As

Casselman and Milne show in their lectures, this is so locally almost everywhere.

One can probably show without great difficulty that the local statement is correct at p as well

when π belongs to the discrete series, for π then contributes to the cohomology in dimension one and

πp = π(σp) where σp is a special representation of the thickened Weil group. In particular

L(z − 1
2
, πp, r) =

1
1− ε/pz , |ε| = 1.

However if π is one-dimensional then π contributes to the cohomology in dimensions zero and

two and the corresponding local contribution to the zeta-function should be

{
1

(1− ε/pz)(1− εp/pz)

}m(πp,Kp)

.

The factor inside the brackets is not L(z − 1
2
, πp, r).

The difficulty is resolved if we realize that when π, and hence π ⊗ πf , is one-dimensional we

should not be using L(z − 1
2
, π ⊗ πf , r) at all but rather L(z − 1

2
, π′ ⊗ π′f , r) where π′ ⊗ π′f is the

one-dimensional representation of G′(A) = GL(2,A) defined by the same character of the idèle-class
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group as π ⊗ πf . SinceG′(Qv) ∼ G(Qv) and π′v ∼ πv for almost all places v, the error of using π ⊗ πf
instead of π′ ⊗ π′f is not detected when one only considers the local zeta-function almost everywhere.

The significance of the considerations of the second and third sections begins to appear. The

representation π ⊗ πf and the representation π′′ ⊗ π′′f of G′(A) associated to it by the principle of

functoriality are anomalous, because π′′v is one-dimensional for almost all places v while π′′p is infinite-

dimensional. The isobaric representation equivalent to π′′ ⊗ π′′f almost everywhere is π′ ⊗ π′f . It was

implicit in the discussion of the second section that anomalous representations would have nothing to

do with motives, and so it should come as no surprise now that we must discard π ⊗ πf and replace it

by π′ ⊗ π′f .

In this example π itself was not changed for G(R) ∼ G′(R) and π ∼ π′. However in gen-

eral we must expect that π itself will have to be modified. Thus the proper factor will not be L(z

−d/2, π⊗πf , r) but L(z−d/2, π′⊗π′f , r), where π′⊗π′f is an automorphic representation of a group

G′ obtained fromG by an inner twisting. Again π′v will have to be equivalent to πv almost everywhere.

Since at the moment we are primarily interested in the infinite place, we simply ask whether it

is possible to find a candidate for π′ or, rather, for an L-packet {π′} = Π′. There are apparently two

conditions to be satisfied, the first arising from the compatibility of functional equations.

(a) Let π ∈ Πϕ and let {π′} = Πϕ′ . For any additive character ψ of R and any representation

σ of LG = LG′,

ε′(z, σ ◦ ϕ,ψ) = ε(z, σ ◦ ϕ,ψ)L(1− z, σ ◦ ϕ)
L(z, σ ◦ ϕ)

is equal to

ε′(z, σ ◦ ϕ′, ψ) = ε(z, σ ◦ ϕ′, ψ)
L(1 − z, σ ◦ ϕ′)
L(z, σ ◦ ϕ′)

.

(b) It is possible to find a summand ψ0(π′) of ψ1(π′) which is such that ψ2(π) = αψ0(π′), α ∈ Z.

These conditions are only tentative, and may have to be modified in the course of time, but they

will serve for the explanation of our problem.

The first condition involves only ϕ and ϕ′ and we begin by constructing some pairs that satisfy it.

Fix an element w ofWC/R that projects to ι and satisfies w2 = −1. We may suppose that ϕ(w) = a× ι
with a in the normalizer of LT ◦ in LG◦. Then ϕ(w) also normalizes LT ◦. Let ϕ(ι) denote the

transformation of X∗(LT ◦) or of X∗(LT ◦) defined by ϕ(w). We may also suppose that ϕ takes C× to
LT ◦ and that ϕ(z) = zΛz̄ϕ(ι)Λ with Λ ∈ X∗(LT ◦)⊗ C and Λ− ϕ(ι)Λ ∈ X∗(LT ◦).
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The representationϕ′ will be defined in a similar way. Thusϕ′(w) = a′×ιwith a′ in the normalizer

of LT ◦, and ϕ′(z) = zΛz̄ϕ
′(ι)Λ. Notice that Λ is to be the same for ϕ′ as for ϕ. However a, which is

given, is replaced by a′, which we must now define.

We suppose that ϕ(ι) sends every root to its negative, and choose λ inX∗(LT ◦) such that λ∨(a) =

e2πi〈λ,λ
∨〉 for any weight λ∨ of LT ◦ which is orthogonal to all roots. We shall take a′ to lie in LT ◦ and

to be such that λv(a′) = e2πi〈λ
′,λ∨〉 when λ∨ is orthogonal to all roots. Here λ′ is still to be defined. If

we also denote by a the operator on X∗(LT ◦) ⊗ C defined by a and if we let q be one-half the sum of

the positive roots then λ′ is to be given by the equation

λ′ =
1 + a

2
λ− (1− a)(1 + ϕ′(ι))

8
Λ +

q

2
.

Observe that the action of ϕ′(ι) is the same as that of ι.

We are assuming that ϕ is a given, well-defined homomorphism, and hence [31] that

λ+ ϕ(ι)λ ≡ Λ− ϕ(ι)Λ
2

− q(mod X∗(LT ◦)).

In order to show that ϕ′ is also well defined we must verify that

(7.7) λ′ + ϕ′(ι)λ′ ≡ Λ− ϕ(ι)Λ
2

(mod X∗(LT ◦)).

We begin with the equations aϕ′(ι) = ϕ′(ι)a = ϕ(ι) and a(1 + ϕ(ι)) = 1 + ϕ(ι), remarking also

that the square of both ϕ(ι) and ϕ′(ι) is the identity. We infer that the left side of (7.7) is equal to

(1 + ϕ′(ι))(1 + ϕ(ι))λ
2

− (1− a)(1 + ϕ′(ι))
4

Λ + q,

because (1 + ϕ′(ι))q/2 = q. The sum is in turn congruent to

1− ϕ(ι)
2

Λ− (1− a)(1 + ϕ′(ι))
4

Λ =
1− ϕ′(ι)

2
Λ.

Consequently the homomorphism ϕ′ can be constructed whenever ϕ is defined and ϕ(ι) sends

every root to its negative. The following lemma is valid in this generality.
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Lemma. For any representation σ of the Weil form of LG and any nontrivial character ψ of R,

ε′(τ, σ ◦ ϕ,ψ) = ε′(τ, σ ◦ ϕ′, ψ).

The proof is a computation based on the proof of Lemma 3.2 of [31] and on Chapters 5 and 6 of

[24], but it is rather lengthy, and not worth including here.

Observe that we could have started with ϕ′, defined by an a′ in LT ◦, and reversing the process,

passed to λ and a. More generally ifLM and LM ′ are two parabolic subgroups ofLG, andϕ :WC/R →
LM has an image which lies in no proper parabolic subgroup of LM , then we can use the process to

pass to a ϕ′′ whose image lies in the minimal parabolic of LM , and thus of LG or LM ′, and afterwards

reverse it to pass from ϕ′′ to a ϕ′ :WC/R → LM ′ whose image lies in no proper parabolic subgroup of
LM ′.

My intention now is simply to show, by means of a few examples, how for a given π in some Πϕ

one can choose one of the ϕ′ just described so that the condition (b) is satisfied for the elements π′ of

Πϕ′ . Of course the problem is to decide if such a choice is always possible. Without more examples or

a general theorem, we cannot be at all confident that this is so.

If all the continuous cohomology of ξ ⊗ π is zero there is no difficulty satisfying (b). We take

ϕ′ = ϕ and α = 0. The simplest nontrivial example is obtained by taking ξ trivial and π trivial. Let

π ∈ Πϕ. Then ϕ(z) = zq z̄ϕ(ι)q, with q equal again to one-half the sum of the positive roots. If LM

is the parabolic subgroup of LG corresponding to the minimal parabolic of G over R, then the image

of ϕ lies in LM and ϕ(ι) takes every root of LT ◦ in LM to its negative. Define ϕ′ as above, with

a′ ∈ LT ◦. G′ can be taken to be the quasi-split form of G over R. The continuous cohomology of π is

all in even dimensions and all of type (p, p) for some p. To compute it one observes that it is the same

as the cohomology of the compact dual, which can be computed by using Schubert cells. One verifies

without difficulty that for π′ ∈ Πϕ′ the representation ψ1(π′), which depends in reality only on ϕ′, is

equivalent to ψ2(π).

If G is not quasi-split over R then ϕ′ is different from ϕ. If G is not quasi-split over R then it is

certainly not quasi-slit over Q, and the trivial representation ofG(A) is anomalous. Once again we see

that the passage from π to π′ is the local expression of the passage from an anomalous representation

to one which is not anomalous.



Automorphic representations 50

Other interesting examples are the representations π = Ji,j of PSU(n, 1) discussed in Chapter XI

of the notes of Borel-Wallach [4]. Take ξ trivial. In this case ψ2(π) is (−1)i+j times a representation

induced from C×, the representation of C× used having the weights

(7.8) z−iz̄−j , z−i−1z̄−j−1, · · · , z−(n−j)z̄−(n−i).

Here 0 � i + j � n− 1 and 0 � i, j. Borel and Wallach lapse into vagueness at one point, and it may

be that the roles of i and j should be reversed, but that is of little consequence.

The group LG◦ is SL(n+ 1,C) and LT ◦ may be taken to be the group of diagonal matrices. The

representation r◦ is the standard representation of SL(n+ 1,C). It is easy enough to deduce from [4]

that if π ∈ Πϕ then

ϕ(z) = zΛz̄ϕ(ι)Λ, z ∈ C×,

with Λ being equal to (n/2− i, n/2, n/2− 1, · · · , n/2− i+ 1, n/2− i− 1, · · · ,−n/2 + j + 1,−n/2 +
j − 1, · · · ,−n/2,−n/2 + j). The numbers occurring here are n/2, n/2− 1, · · · ,−n/2, but the order is

somewhat unusual. The transformation ϕ(ι) is given by

(x1, · · · , xn+1) −→ (−xn+1,−x2, · · · ,−xn,−x1).

We are of course using the obvious representation of the elements of X∗(LT ◦) ⊗ C as sequences of

n+ 1 complex numbers whose sum is 0.

Suppose, to be definite, that i � j. We will choose ϕ′ to be such that the transformation ϕ′(ι)

takes (x1, · · · , xn+1) to (−xn+1,−xn, · · · ,−xn−i+1,−xn−j , · · · ,−xi+2,−xn−j+1, · · · ,−xn−i,−xi+1,

· · · ,−x1). The indices within the gaps decrease or increase regularly by one. If π′ ∈ Πϕ′ then the

representation ψ1(π′) is induced from a representation of C× with weights

(7.9)

z−iz̄−j , 1, z−1 z̄−1, · · · , z−i+1z̄−j+1;

z−i−1z̄−j−1, · · · , z−(n−j−1)z̄−(n−i−1);

z−(n−j+1)z̄−(j−1), · · · , z−(n−i)z̄−i;

z−(n−i+1)z̄−(n−i+1), · · · , z−nz̄−n, z−(n−j)z̄−(n−i).

Happily the set (7.8) is a subset of (7.9) and the condition (b) is satisfied.

It should be observed that the representation ψ0(π′) that is chosen to satisfy (b) will have to be,

except for some degenerate values of i and j, a proper subrepresentation of ψ1(π′). This phenomenon
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will, I hope, be taken into account by L-indistinguishability. For example if ε is the element of LT ◦

with diagonal entries

1,

i︷ ︸︸ ︷
−1,−1, · · · ,−1 1, · · · , 1,

j︷ ︸︸ ︷
−1, · · · ,−1, 1

then ε commutes with ϕ′(WC/R) and ψ0(π′) may be taken to be the restriction of ψ1(π′) to the +1

eigenspace of r(ε).
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